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Preface

A volume of collected works is almost always a bad sign for one's research
trajectory, an indication of declining productivity as much as professional
recognition. We hope to be the exception that proves this rule because nei-
ther of us is willing to concede that we have reached the apex of our careers .
However, we do think that the papers collected in this volume form a coher-
ent and exciting story, one that bears retelling now that we have the luxury
of seeing the forest for the trees . When we began our collaboration over
a decade ago, we certainly had no intention of embarking on as ambitious
a research agenda as this volume might imply. And although we are still
actively engaged in exploring these issues, when we were presented with the
opportunity to bring together a group of our papers, we simply could not
resist. Whether by design or by coincidence, here we are with eleven papers
and an introduction, the running total of our research on the Random Walk
Hypothesis and predictability in financial markets .

Although we were sorely tempted to revise our papers to incorporate
the benefits of hindsight, we have resisted that temptation so as to keep
our contributions in their proper context. However, we do provide general
introductions to each of the three parts that comprise this collection of
papers, which we hope will clarify and sharpen some of the issues that we
only touched upon when we were in the midst of the research. Also, we have
updated all our references, hence on occasion there may be a few temporal
inconsistencies, e.g., citations of papers published several years after ours .

We hope that this volume will add fuel to the fires of debate and con-
troversy, and expand the areńa to include a broader set of participants, par-
ticularly those who may have more practical wisdom regarding the business
of predicting financial markets . Although Paul Samuelson once chided
economists for predicting "five out of the past three recessions", our re-
search has given us a deeper appreciation for both the challenges and the
successes of quantitative investment management . As for whether or not
this little book contains the secrets to greater wealth, we are reminded of



xxü

	

Preface

the streetwise aphorism that the first principle of making money is learning
how not to lose it . Indeed, although there are probably still only a few ways
to make money reliably, the growing complexity of financial markets has
created many more ways to lose it and lose it quickly. We have argued that
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1
Introductions

ONE O~ TAE EARLIEST and most enduring models of the behavior of security
prices is the Random Walk Hypothesis, an idea that was conceived in the
sixteenth century as a model of games of chance . 2 Closely tied to the birth
of probability theory, the Random Walk Hypothesis has had an illustrious
history, with remarkable intellectual forbears such as Bachelier, Einstein,
Levy, Kolmogorov, and Wiener.

More recently, and as with so many of the ideas of modern economics,
the first serious application of the Random Walk Hypothesis to financial
markets can be traced back to Paul Samuelson (1965), whose contribution is
neatly summarized by the title of his article : "Proof that Properly Anticipated
Prices Fluctuate Randomly." In an informationally efficient market-not to
be confused with an allocationally or Pareto-efficient market-price changes
must be unforecastable if they are properly anticipated, i .e., if they fully
incorporate the expectations and information of all market participants .
Fama (1970) encapsulated this idea in his pithy dictum that "prices fully
reflect all available information ."

Unlike the many applications of the Random Walk Hypothesis in the
natural and physical sciences in which randomness is assumed . almost by
default, because of the absence of any natural alternatives, Samuelson ar-
gues that randomness is achieved through the active participation of many
investors seeking greater wealth . Unable to curtail their greed, an army
of investors aggressively pounce on even the smallest informational advan-
tages at their disposal, and in doing so, they incorporate their information
into market prices and quickly eliminate the profit opportunities that gave
rise to their aggression . If this occurs instantaneously, which it must in an
idealized world of "frictionless" markets and costless trading, then prices
must always fully reflect all available information and no profits can be gar-

s Parts of this introduction are adapted from Lo (1997a,b) and Lo and MacKinlay (1998) .
2 See, for example, Hald (1990, Chapter 4) .
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nered from information-based trading (because such profits have already
been captured) . This has a wonderfully counter-intuitive and seemingly
contradictory flavor to it : the more efficient the market, the more random
the sequence of price changes generated by such a market, and the most
efficient market of all is one in which price changes are completely random
and unpredictable .

For these reasons, the Random Walk Hypothesis and its close relative,
the Efficient Markets Hypothesis, have become icons of modern financial
economics that continue to fire the imagination of academics and invest-
ment professionals alike . The papers collected in this volume comprise our
own foray into this rich literature, spanning a decade of research that we
initiated in 1988 with our rejection of the Random Walk Hypothesis for US
stock market prices, and then following a course that seemed, at times, to
be self-propelled, the seeds of our next study planted by the results of the
previous one .

If there is one central theme that organizes the papers contained in this
volume, it is this : financial markets are predictable to some degree, but far
from being a symptom of inefficiency or irrationality, predictability is the oil
that lubricates the gears of capitalism . Indeed, quite by accident and rather
indirectly, we have come face to face with an insight that Ronald Coase hit
upon as an undergraduate over half a century ago : price discovery is neither
instantaneous nor costless, and frictions play a major role in determining
the nature of competition and the function of markets .

1 .1 The Random Walk and Efficient Markets

One of the most common reactions to our early research was surprise and
disbelief. Indeed, when we first presented our rejection of the Random
Walk Hypothesis at an academic conference in 1986, our discussant-a dis-
tinguished economist and senior member of the profession-asserted with
great confidence that we had made a programming error, for if our results
were correct, this would imply tremendous profit opportunities in the stock
market. Being too timid (and too junior) at the time, we responded weakly
that our programming was quite solid thank you, and the ensuing debate
quickly degenerated thereafter . Fortunately, others were able to replicate
our findings exactly, and our wounded pride has healed quite nicely with
the passage of time (though we still bristle at the thought of being pros-
ecuted for programming errors without "probable cause") . Nevertheless,
this experience has left an indelible impression on us, forcing us to confront
the fact that the Random Walk Hypothesis was so fully ingrained into the
canon of our profession that it was easier to attribute our empirical results
to programming errors than to accept them at face value .



1.1 . The Kapdom Walk and Efficient Markets

	

5

Is it possible for stock market prices to be predictable to some degree
in an efficient market?

This question hints at the source of disbelief among our early critics : an
implicit-and incorrect-link between the Random Walk Hypothesis and
the Efficient Markets Hypothesis. It is not difficult to see how the two ideas
might be confused . Under very special circumstances, e .g ., risk neutrality,
the two are equivalent . However, LeRoy (1973), Lucas (1978), and many
others have shown in many ways and in many contexts that the Random Walk
Hypothesis is nether a necessary nor a sufficient condition for rationally
determined security prices . In other words, unforecastable prices need
not imply a well-functioning financial market with rational investors, and
forecastable prices need not imply the opposite .

These conclusions seem sharply at odds with Samuelson's "proof' that
properly anticipated prices fluctuate randomly, an argument so compelling
that it is reminiscent of the role that uncertainty plays in quantum mechan-
ics. Just as Heisenberg's uncertainty principle places a limit on what we can
know about an electron's position and momentum ~f quantum mechanics
holds, Samuelson's version of the Efficίent Markets Hypothesis places a limit
on what we can know about future price changes if the forces of economic
self-interest hold .

Nevertheless, one of the central insights of modern financial economics
is the necessity of some trade-off between risk and expected return, and
although Samuelson's version of the Efficient Markets Hypothesis places a
restriction on expected returns, it does not account for risk in any way. In
particular, if a security's expected price change is positive, it may be just the
reward needed to attract investors to hold the asset and bear the associated
risks . Indeed, if an investor is sufficiently risk averse, he might gladly pay to
avoid holding a security that has unforecastable returns .

In such a world, the Random Walk Hypothesis-a purely statistical
model of returns-need not be satisfied even if prices do fully reflect all
available information . This was demonstrated conclusively by LeRoy (1973)
and Lucas (1978), who construct explicit examples of informationally effi-
cient markets in which the Efficient Markets Hypothesis holds but where
prices do not follow random walks .

Grossman (1976) and Grossman and Stiglitz (1980) go even further .
They argue that perfectly informationally efficient markets are an impossibil-
ity, for if markets are perfectly efficient, the return to gathering information
is nil, in which case there would be little reason to trade and markets would
eventually collapse . Alternatively, the degree of market inefficiency deter-
mines the effort investors are willing to expend to gather and trade on in-
formation, hence a non-degenerate market equilibrium will arise only when
there are sufficient profit opportunities, i .e ., inefficiencies, to compensate
investors for the costs of trading and information-gathering. The profits
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earned by these industrious investors may be viewed as economic rents that
accrue to those willing to engage in such activities . Who are the providers
of these rents? Black (1986) gives us a provocative answer : noise traders,
individuals who trade on what they think is information but is in fact merely
noise . More generally, at any time there are always investors who trade for
reasons other than information-for example, those with unexpected liq-
uidity needs-and these investors are willing to "pay up" for the privilege of
executing their trades immediately .

These investors may well be losing money on average when they trade
with information-motivated investors, but there is nothing irrational or inef-
ficient about either group's behavior . In fact, an investor may be trading for
liquidity reasons one day and for information reasons the next, and losing
or earning money depending on the circumstances surrounding the trade .

1 .2 The Current State of Efficient Markets

There is an old joke, widely told among economists, about an economist
strolling down the street with a companion when they come upon a $100
bill lying on the ground. As the companion reaches down to pick it up, the
economist says "Don't bother-if it were a real $100 bill, someone would
have already picked it up ."

This humorous example of economic logic gone awry strikes danger-
ously close to home for students of the Efficient Markets Hypothesis, one of
the most important controversial and well-studied propositions in all the so-
cial sciences . It is disarmingly simple to state, has far-reaching consequences
for academic pursuits and business practice, and yet is surprisingly resilient
to empirical proof or refutation . Even after three decades of research and
literally thousands of journal articles, economists have not yet reached a
consensus about whether markets-particularly financial markets-are ef-
ficient or not .

What can we conclude about the Efficient Markets Hypothesis? Amaz-
ingly, there is still no consensus among financial economists . Despite the
many advances in the statistical analysis, databases, and theoretical models
surrounding the Efficient Markets Hypothesis, the main effect that the large
number of empirical studies have had on this debate is to harden the resolve
of the proponents on each side .

One of the reasons for this state of affairs is the fact that the Efficient
Markets Hypothesis, by itself, is not a well-defined and empirically refutable
hypothesis. To make it operational, one must specify additional structure,

e .g., investors' preferences, information structure, business conditions, etc .
But then a test of the Efficient Markets Hypothesis becomes a test of several
auxiliary hypotheses as well, and a rejection of such a joint hypothesis tells
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us little about which aspect of the joint hypothesis is inconsistent with the
data. Are stock prices too volatile because markets are inefficient, or is it due
to risk aversion, or dividend smoothing? All three inferences are consistent
with the data . Moreover, new statistical tests designed to distinguish among
them will no doubt require auxiliary hypotheses of their own which, in turn,
may be questioned.

More importantly, tests of the Efficient Markets Hypothesis may not be
the most informative means of gauging the efficiency of a given market .
What is often of more consequence is the relative efficiency of a particular
market, relative to other markets, e.g ., futures vs. spot markets, auction vs .
dealer markets, etc . The advantages of the concept of relative efficiency, as
opposed to the all-or-nothing notion of absolute efficiency, are easy to spot
by way of an analogy. Physical systems are often given an efficiency rating
based on the relative proportion of energy or fuel converted to useful work .
Therefore, a piston engine may be rated at 60% efficiency, meaning that on
average 60% of the energy contained in the engine's fuel is used to turn the
crankshaft, with the remaining 40% lost to other forms of work, e.g., heat,
light, noise, etc .

Few engineers would ever consider performing a statistical test to deter-
mine whether or not a given engine is perfectly efficient-such an engine
exists only in the idealized frictionless world of the imagination . But mea-
suring relative efficiency-relative to a frictionless ideal-is commonplace .
Indeed, we have come to expect such measurements for many household
products: air conditioners, hot water heaters, refrigerators, etc . Therefore,
from a practical point of view, and in light of Grossman and Stiglitz (1980),
the Efficient Markets Hypothesis is an idealization that is economically un-
realizable, but which serves as a useful benchmark for measuring relative
efficiency.

A more practical version of the Efficient Markets Hypothesis is suggested
by another analogy, one involving the notion of thermal equilibrium in sta-
tistical mechanics . Despite the occasional "excess" profit opportunity, on
average and over time, it is not possible to earn such profits consistently
without some type of competitive advantage, e.g., superior information, su-
perior technology, financial innovation, etc . Alternatively, in an efficient
market, the only way to earn positive profits consistently is to develop a com-
petitive advantage, in which case the profits may be viewed as the economic
rents that accrue to this competitive advantage . The consistency of such
profits is an important qualification-in this version of the Efficient Mar-
kets Hypothesis, an occasional free lunch is permitted, but free lunch plans
are ruled out.

To see why such an interpretation of the Efficient Markets Hypothesis
is a more practical one, consider for a moment applying the classical ver-
sion of the Efficient Markets Hypothesis to a non-financial market, say the
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market for biotechnology. Consider, for example, the goal of developing a
vaccine for the AIDS virus. If the market for biotechnology is efficient in the
classical sense, such a vaccine can never be developed-if it could, someone
would have already done it! This is clearly a ludicrous presumption since
it ignores the difficulty and gestation lags of research and development in
biotechnology. Moreover, if a pharmaceutical company does succeed in
developing such a vaccine, the profits earned would be measured in the
billions of dollars. Would this be considered "excess" profits, or economic
rents that accrue to biotechnology patents?

Financial markets are no different in principle, only in degrees . Con-
sequently, the profits that accrue to an investment professional need not be
a market inefficiency, but may simply be the fair reward to breakthroughs in
financial technology. After all, few analysts would regard the hefty profits
of Amgen over the past few years as evidence of an inefficient market for
pharmaceuticals-Amgen's recent profitability is readily identified with the
development of several new drugs (Epogen, for example, a drug that stimu-
lates the production of red blood cells), some considered breakthroughs in
biotechnology. Similarly, even in efficient financial markets there are very
handsome returns to breakthroughs in financial technology .

Of course, barriers to entry are typically lower, the degree of compe-
tition is much higher, and most financial technologies are not patentable
(though this may soon change) hence the "half life" of the profitability of
financial innovation is considerably smaller . These features imply that finan-
cial markets should be relatively more efficient, and indeed they are . The
market for "used securities" is considerably more efficient than the market
for used cars . But to argue that financial markets must be perfectly efficient

is .tantamount to the claim that an AIDS vaccine cannot be found . In an

efficient market, it is difficult to earn a good living, but not impossible .

1.3 Practical Implications

Our research findings have several implications for financial economists
and investors. The fact that the Random Walk Hypothesis hypothesis can
be rejected for recent US equity returns suggests the presence of predictable
components in the stock market . This opens the door to superior long-term
investment returns through disciplined active investment management . In

much the same way that innovations in biotechnology can garner superior
returns for venture capitalists, innovations in financial technology can gar-
ner equally superior returns for investors .

However, several qualifications must be kept in mind when assessing
which of the many active strategies currently being touted is appropriate
for an particular investor. First, the riskiness of active strategies can be very
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different from passive strategies, and such risks do not necessarily "average
out" over time . In particular, an investor's risk tolerance must be taken into
account in selecting the long-term investment strategy that will best match
the investor's goals . This is no simple task since many investors have little
understanding of their own risk preferences, hence consumer education is
perhaps the most pressing need in the near term . Fortunately, computer
technology can play a major role in this challenge, providing scenario analy-
ses, graphical displays of potential losses and gains, and realistic simulations
of long-term investment performance that are user-friendly and easily incor-
porated into an investor's world view . Nevertheless, a good understanding
of the investor's understanding of the nature of financial risks and rewards
is the natural starting point for the investment process .

Second, there are a plethora of active managers vying for the privilege of
managing institutional and pension assets, but they cannot all outperform
the market every year (nor should we necessarily expect them to) . Though
often judged against a common benchmark, e.g ., the S&P 500, active strate-
gies can have very diverse risk characteristics and these must be weighed in
assessing their performance . An active strategy involving high-risk venture-
capital investments will tend to outperform the S&P 500 more often than a
less aggressive "enhanced indexing" strategy, yet one is not necessarily better
than the other.

In particular, past returns should not be the sole or even the major cri-
terion by which investment managers are judged . This statement often
surprises investors and finance professionals-after all, isn't this the bottom
line? Put another way, "If it works, who cares why?" . Selecting an investment
manager this way is one of the surest paths to financial disaster. Unlike the
experimental sciences such as physics and biology, financial economics (and
most other social sciences) relies primarily on statistical inference to test its
theories. Therefore, we can never know with perfect certainty that a partic-
ular investment strategy is successful since even the most successful strategy
can always be explained by pure luck (see Chapter 8 for some concrete
illustrations) .

Of course, some kinds of success are easier to attribute to luck than
others, and it is precisely this kind of attribution that must be performed in
deciding on a particular active investment style . Is it luck, or is it genuine?

While statistical inference pan be very helpful in tackling this question,
in the final analysis the question is not about statistics, but rather about
economics and financial innovation . Under the practical version of the Ef-
ficient Markets Hypothesis, it is difficult-but not impossible-to provide
investors with consistently superior investment returns . So what are the
sources of superior performance promised by an active manager and why
have other competing managers not recognized these opportunities? Is it
better mathematical models of financial markets? Or more accurate statisti-
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cal methods for identifying investment opportunities? Or more timely data
in a market where minute delays can mean the difference between profits
and losses? Without a compelling argument for where an active manager's
value-added is coming from, one must be very skeptical about the prospects
for future performance . In particular, the concept of a "black box"-a de-
vice that performs a known function reliably but obscurely-may make sense
in engineering applications where repeated experiments can validate the
reliability of the box's performance, but has no counterpart in investment
management where performance attribution is considerably more difficult .
For analyzing investment strategies, it matters a great deal why a strategy is
supposed to work.

Finally, despite the caveats concerning performance attribution and
proper motivation, we can make some educated guesses about where the
likely sources of value-added might be for active investment management
in the near future .

• The revolution in computing technology and datafeeds suggest that
highly computation-intensive strategies-ones that could not have been
implemented five years ago-that exploit certain regularities in securi-
ties prices, e.g ., clientele biases, tax opportunities, information lags, can
add value .

• Many studies have demonstrated the enormous impact that transac-
tions costs can have on long-term investment performance. More so-
phisticated methods for measuring and controlling transactions costs-
methods which employ high-frequency data, economic models of price
impact, and advanced optimization techniques-can add value . Also,
the introduction of financial instruments that reduce transactions costs,
e.g ., swaps, options, and other derivative securities, can add value .

• Recent research in psychological biases inherent in human cognition
suggest that investment strategies exploiting these biases can add value .
However, contrary to the recently popular "behavioral" approach to
investments which proposes to take advantage of individual "irrational-
ity," I suggest that value-added comes from creating investments with
more attractive risk-sharing characteristics suggested by psychological
models. Though the difference may seem academic, it has far-reaching
consequences for the long-run performance of such strategies : taking
advantage of individual irrationality cannot be a recipe for long-term
success, but providing a better set of opportunities that more closely
matches what investors desire seems more promising .

Of course, forecasting the sources of future innovations in financial
technology is a treacherous business, fraught with many half-baked suc-
cesses and some embarrassing failures . Perhaps the only reliable prediction
is that the innovations of future are likely to come from unexpected and
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underappreciated sources . No one has illustrated this principal so well as
Harry Markowitz, the father of modern portfolio theory and a winner of
the 1990 Nobel Prize in economics. In describing his experience as a Ph.D .
student on the eve of his graduation in the following way, he wrote in his
Nobel address :

. . . [W]hen I defended my dissertation as a student in the Economics
Department of the University of Chicago, Professor Milton Friedman
argued that portfolio theory was not Economics, and that they could not
award me a Ph .D. degree in Economics for a dissertation which was not
Economics. I assume that he was only half serious, since they did award
me the degree without long debate . As to the merits of his arguments,
at this point I am quite willing to concede : at the time I defended m~
dissertation, portfolio theory was not part of Economics . But now it is .

It is our hope and conceit that the research contained in this volume will be
worthy of the tradition that Markowitz and others have so firmly established .



Part I

THE FIVE CHAPTERS nv THIS FIRST PART focus squarely on whether the Ran-
dom Walk Hypothesis is a plausible description of recent US stock market
prices. At the time we started our investigations-in 1985, just a year af-
ter we arrived at the Wharton School-the Random Walk Hypothesis was
taken for granted as gospel truth . A number of well-known empirical stud-
ies had long since established the fact that markets were "weak-form effi-
cient" in Roberts's (1967) terminology, implying that past prices could not
be used to forecast future prices changes (see, for example, Cowles and
Jones (1973), Kendall (1953), Osborne (1959, 1962), Roberts (1959, 1967),
Larson (1960), Cowles (1960), Working (1960), Alexander (1961, 1964),
Granger and Morgenstern (1963), Mandelbrot (1963), Fama (1965), and

Fama and Blume (1966)) . And although some of these studies did find
evidence against the random walk, e .g., Cowles and Jones (1973), they were
largely dismissed as statistical anomalies or not economically meaningful
after accounting for transactions costs, e .g., Cowles (1960) . For example,
after conducting an extensive empirical analysis of the "runs' of US stock
returns from 1956 to 1962, Fama (1965) concludes that, " . . . there is no ev-
idence of important dependence from either an investment or a statistical
point of view."

It was in this milieu that we decided to revisit the Random Walk Hypoth-
esis. Previous studies had been unable to reject the random walk, hence we
surmised that perhaps a more sensitive statistical test was needed, one ca-
pable of detecting small but significant departures from pure randomness .

In the jargon of statistical inference, we hoped to develop a more "power-
ful" test, a test that has a higher probability of rejecting the Random Walk
Hypothesis if it is indeed false . Motivated partly by an insight of Merton's
(1980), that variances can be estimated more accurately than means when
data is sampled at finer intervals, we proposed a test of the random walk
based on a comparison of variances at different sampling intervals . And

13
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by casting the comparison as a Hausman (1978) specification test, we were
able to obtain an asymptotic sampling theory for the variance ratio statis-
tic almost immediately, which we later generalized and extended in many
ways. These results and their empirical implementation are described in
Chapter 2 .

In retrospect, our motivation for the variance ratio test was completely
unnecessary.

Although Merton's (1980) observation holds quite generally, the over-
whelming rejections of the Random Walk Hypothesis that we obtained for
weekly US stock returns from 1962 to 1985 implied that a more powerful test
was not needed-the random walk could have been rejected on the basis
of the simple first-order autocorrelation coefficient, which we estimated to
be 30 percent for the equal-weighted weekly returns index! We were taken
completely by surprise (and carefully re-checked our programs several times
for coding errors before debuting these results in a November 1986 confer-
ence) . How could such compelling evidence against the random walk be
overlooked by the vast literature we were fed as graduate students?

At first, we attributed this to our using weekly returns-prior studies
used either daily or monthly. We chose a weekly sampling interval to balance
the desire for a large sample size against the problems associated with high-
frequency financial data, e.g., nonsynchronous prices, bid/ask "bounce,"
etc. But we soon discovered that the case against the random walk was
equally compelling with daily returns .

This puzzling state of affairs sparked the series of studies contained in
Chapters 3 to 6, studies that attempted to reconcile what we, and many
others, viewed as a sharp contradiction between our statistical inferences
and the voluminous literature that came before us . We checked the ac-
curacy of our statistical methods (Chapter 3), we quantified the potential
biases introduced by nonsynchronous prices (Chapter 4), we investigated
the sources of the rejections of the random walk and traced them to large
positive cross-autocorrelations and lead/lag effects (Chapter 5), and we con-
sidered statistical fractals as an alternative to the random walk (Chapter 6) .
Despite our best efforts, we were unable to explain away the evidence against
the Random Walk Hypothesis .

With the benefit of hindsight and a more thorough review of the lit-
erature, we have come to the conclusion that the apparent inconsistency
between the broad support for the Random Walk Hypothesis and our empir-
ical findings is largely due to the common misconception that the Random
Walk Hypothesis is equivalent to the Efficient Markets Hypothesis, and the
near religious devotion of economists to the latter (see Chapter 1) . Once we
saw that we, and our colleagues, had been trained to study the data through
the filtered lenses of classical market efficiency, it became clear that the
problem lay not with our empirical analysis, but with the economic implica-
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tions that others incorrected attributed to our results-unbounded profit
opportunities, irrational investors, and the like .

We also discovered that ours was not the first study to reject the random
walk, and that the departures from the random walk uncovered by Osborne
(1962), Larson (1960), Cootner (1962), Steiger (1964), Niederhoffer and

Osborne (1966), and Schwartz and Whitcomb (1977), to name just a few
examples, were largely ignored by the academic community and unknown
to us until after our own papers were published . 3 We were all in a collec-
tive fog regarding the validity of the Random Walk Hypothesis, but as we
confronted the empirical evidence from every angle and began to rule out
other explanations, slowly the fog lifted for us .

In Niederhoffer's (1997) entertaining and irreverent autobiography,
he sheds some light on the kind of forces at work in creating this fog . In
describing the Random Walk Hypothesis as it developed at the University
of Chicago in the 1960's, he writes :

This theory and the attitude of its adherents found classic expression
in one incident I personally observed that deserves memorialization . A
team of four of the most respected graduate students in finance had
joined forces with two professors, now considered venerable enough to
have won or to have been considered for a Nobel prize, but at that time
feisty as Hades and insecure as a kid on his first date . This elite group
was studying the possible impact of volume on stock price movements,
a subject I had researched . As I was coming down the steps from the
library on the third floor of Haskell Hall, the main business building,
I could see this Group of Six gathered together on a stairway landing,
examining some computer output . Their voices wafted up to me, echo-
ing off the stone walls of the building . One of the students was pointing
to some output while querying the professors, "Well, what if we really
do find something? We'll be up the creek . It won't be consistent with

the random walk model." The younger professor replied, "Don't worry,
we'll cross that bridge in the unlikely event we come to it ."

I could hardly believe my ears-here were six scientists openly hoping
to find no departures from ignorance . I couldn't hold my tongue, and
blurted out, "I sure am glad you are all keeping an open mind about
your research." I could hardly refrain from grinning as I walked past
them. I heard muttered imprecations in response .

3In fact, both Alexander (1961) and Schwartz and Whitcomb (1977) use variance ratios
to test the Random Walk Hypothesis, and although they do not employ the kind of rigorous
statistical inference that we derived in our study, nevertheless it was our mistake to have over-
looked their contributions . Our only defense is that none of our colleagues were aware of
these studies either, for no one pointed out these references to us either before or after our
papers were published .
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From this, Niederhoffer (1997) concludes that "As usual, academicians are
way behind the form" and with respect to the Random Walk Hypothesis, we
are forced to agree .

But beyond the interesting implications that this cognitive dissonance
provides for the sociology of science, we think there is an even more im-
portant insight to be gleaned from all of this . In a recent update of our
original variance ratio test for weekly US stock market indexes, we discov-
ered that the most current data (1986-1996) conforms more closely to the
random walk than our original 1962-1985 sample period . Moreover, upon
further investigation, we learned that over the past decade several invest-
ment firms-most notably, Morgan Stanley and D .E. Shaw-have been en-
gaged in high-frequency equity trading strategies specifically designed to
take advantage of the kind of patterns we uncovered in 1988 . Previously
known as "pairs trading" and now called "statistical arbitrage," these strate-
gies have fared reasonably well until recently, and are now regarded as a very
competitive and thin-margin business because of the proliferation of hedge
funds engaged in these activities . This provides a plausible explanation for
the trend towards randomness in the recent data, one that harkens back to
Samuelson's "Proof that Properly Anticipated Prices Fluctuate Randomly ."

But if Morgan Stanley and D .E. Shaw were profiting in the 1980's from
the predictability in stock returns that is nowwaning because of competition,
can we conclude that markets were inefficient in the 1980's? Not without
additional information about the cost and risk of their trading operations,
and the novelty of their trading strategies relative to their competitors' .

In particular, the profits earned by the early statistical arbitrageurs may
be viewed as economic rents that accrued to their innovation, creativity,
perseverance, and appetite for risk . Now that others have begun to re-
verse engineer and mimick their technologies, profit margins are declining .
Therefore, neither the evidence against the random walk, nor the more re-
cent trend towards the random walk, are inconsistent with the practical
version of the Efficient Markets Hypothesis . Market opportunities need not
be market inefficiencies .



Stock Market Prices
Do Not Follow Random Walks :

Evidence from a Simple
Specification Test

SINCE KEYNES' (1936) NOW FAMOUS PRONOUNCEMENT that most investors'
decisions "can only be taken as a result of animal spirits-of a spontaneous
urge to action rather than inaction, and not as the outcome of a weighted
average of benefits multiplied by quantitative probabilities," a great deal
of research has been devoted to examining the efficiency of stock market
price formation . In Fama's (1970) survey, the vast majority of those studies
were unable to reject the "efficient markets" hypothesis for common stocks .
Although several seemingly anomalous departures from market efficiency
have been well documented, I many financial economists would agree with
Jensen's (1978a) belief that "there is no other proposition in economics
which has more solid empirical evidence supporting it than the Efficient
Markets Hypothesis ."

Although a precise formulation of an empirically refutable efficient mar-
kets hypothesis must obviously be model-specific, historically the majority
of such tests have focused on the forecastability of common stock returns .
Within this paradigm, which has been broadly categorized as the "random
walk" theory of stock prices, few studies have been able to reject the random
walk model statistically. However, several recent papers have uncovered
empirical evidence which suggests that stock returns contain predictable
components. For example, Keim and Stambaugh (1986) find statistically
significant predictability in stock prices by using forecasts based on certain
predetermined variables . In addition, Fama and French (1988) show that

1 See, for example, the studies in Jensen's (1978b) volume on anomalous evidence regard-
ing market efficiency.
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long holding-period returns are significantly negatively serially correlated,
implying that 25 to 40 percent of the variation of longer-horizon returns is
predictable from past returns .

In this chapter we provide further evidence that stock prices do not
follow random walks by using a simple specification test based on variance
estimators. Our empirical results indicate that the random walk model is
generally not consistent with the stochastic behavior of weekly returns, es-
pecially for the smaller capitalization stocks . However, in contrast to the
negative serial correlation that Fama and French (1988) found for longer-
horizon returns, we find significant positive serial correlation for weekly
and monthly holding-period returns. For example, using 1216 weekly ob-
servations from September 6, 1962, to December 26, 1985, we compute the
weekly first-order autocorrelation coefficient of the equal-weighted Center
for Research in Security Prices (CRSP) returns index to be 30 percent! The
statistical significance of our results is robust to heteroskedasticity . We also
develop a simple model which indicates that these large autocorrelations
cannot be attributed solely to the effects of infrequent trading . This empir-
ical puzzle becomes even more striking when we show that autocorrelations
of individual securities are generally negative .

Of course, these results do not necessarily imply that the stock market
is inefficient or that prices are not rational assessments of "fundamental"
values. As Leroy (1973) and Lucas (1978) have shown, rational expectations
equilibrium prices need not even form a martingale sequence, of which the
random walk is a special case . Therefore, without a more explicit economic
model of the price-generating mechanism, a rejection of the random walk
hypothesis has few implications for the efficiency of market pace formation .
Although our test results may be interpreted as a rejection of some economic
model of efficient price formation, there may exist other plausible models
that are consistent with the empirical findings . Our more modest goal in
this study is to employ a test that is capable of distinguishing among several
interesting alternatwe stochastic price processes . Our test exploits the fact
that the variance of the increments of a random walk is linear in the sampling
interval . If stock prices are generated by a random walk (possibly with drift) ,
then, for example, the variance of monthly sampled log-price relatives must
be 4 times as large as the variance of a weekly sample . Comparing the (per
unit time) variance estimates obtained from weekly and monthly prices may
then indicate the plausibility of the random walk theory. 2 Such a comparison

The use of variance ratios is, of course, not new . Most recently, Campbell and Mankiw
(1987), Cochrane (1987b, 1987c), Fama and French (1988), French and Roll (1986), and
H~~izinga (1987) have all computed variance ratios in a variety of contexts ; however, these stud-
ies do not provide any formal sampling theory for our statis~cs . Specifically, Cochrane (1988),
Fama and French (1988), and French and Roll (1986) all rely on Monte Carlo simulations to
obtain standard errors for their variance ratios under the null . Campbell and Mankiw (1987)
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is formed quantitatively along the lines of the Hausm€n (1978) specification
test and is particularly simple to implement .

In Section 2 .1 we de•ve our specification test for both homoskedastic
and heteroskedastic random walks . Our main results are given in Section
22, where rejections of the random walk are extensively documented for
weekly returns indexes, size-sorted portfolios, and individual securities . Sec-
tion 2.3 contains a simple model which demonstrates that infrequent trading
cannot fully account for the magnitude of the estimated autocorrelations
of weekly stock returns . In Section 2 .4 we discuss the consistency of our
empirical rejections with a mean-reverting alternative to the random walk
model. We summarize briefly and conclude in Section 2 .5 .

2.1 The Specification Test

Denote by Pt the stock price at time t and define Xt = In Pt as the log-price

process. Our maintained hypothesis is given by the recursive relation

‚t = ~ + ‚ƒ-ƒ + „1

	

(2.1 .1)

where ~ is an arbitrary drift parameter and ~ t is the random disturbance
term. We assume throughout thatfor all t, E[~ l ] = 0, where E[ …] denotes the

and Cochrane (1987c) do derive the asymptotic variance of the variance ratio but only under
the assumption that the aggregation value q grows with (but more slowly than) the sample size
T. Specifically, they use P•esiley's (1981, page 463) expression for the asymptotic variance
of the estimator of the spectral density of ~X~ at frequency 0 (with a Bartlett window) as the
appropriate asymptotic variance of the variance ratio . But Priestley's result requires (among
other things) that q -1 oa, T ~ eo, and q/ T ~ 0 . In this chapter we develop the formal
sampling theory of the variance-ratio statistics for the more general case .

Our variance ratio may, however, be related to the spectral-density estimates in the following
way. Letting f (0) denote the spectral density of the increments ~X~ at frequency 0, we have
the following relation :

†f(0) = y(0)+2~y(k)
k=1

where y (k) is the autocovariance function . Dividing both sides by the variance y (0) then yields

~f*(0) = 1+2~~(k)
k=1

where f* is the normalized spectral density and p(k) is the autocorrelation function . Now in
order to estimate the quantity ~f*(0), the infinite sum on the right-hand side of the preced-
ing equation must obviously be truncated . I~ in addition to truncation, the autocorrelations
are weighted using Newey and West's (1987) procedure, then the resul‡ng estimator is for-
mally equivalent to our M,(q)-statistic . Although he domes not explicitly use this variance ratio,
Huizinga (1987) does employ the Newey and West (1987) estimator of the normalized spectral
density.
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expectations operator. Although the traditional randˆm walk hypothesis re-
stricts the i t's to be independently and identically distributed (IID) Gaussian
random variables, there is mounting evidence that financial time series often
possess time-varying volatilities and deviate from normality. Since it is the
unforecastability, or uncorrelatedness, of price changes that is of interest,
a rejection of the IID Gaussian random walk because of heteroskedasticity
or nonnormality would be of less import than a rejection that is robust to
these two aspects of the data . In Section 2.1.2 we develop a test statistic
which is sensitive to correlated price changes but which is otherwise robust
to many forms of heteroskedasticity and nonnormality. Although our empir-
ical results rely solely on this statistic, for purposes of clarity we also present
in Section 2 .1 .1 the sampling theory for the more restrictive IID Gaussian
random walk .

2. l . I Homoskedastic Increments

We begin with the null hypothesis H that the disturbances ~~ are indepen-
dently and identically distributed normal random variables with variance
~ˆ ; thus,

H : ~~ IID N(0, ~~) .

	

(2.1 .2)

In addition to homoskedasticity, we have made the assumption of indepen-
dent Gaussian increments . An example of such a specification is the ex-
act discrete-time process X~ obtained by sampling the following well-known
continuous-time process at equally spaced intervals :

dX(t) _ ~ dt ~- ~ o dW(t)

	

(2.1 .3)

where dW(t) denotes the standard Wiener differential . The solution to
this stochastic differential equation corresponds to the popular lognormal
diffusion price process .

One important property of the random walk X~ is that the variance of
its increments is linear in the observation interval . That is, the variance of
Xt - X~-2 is twice the variance of X~ - X~_~ . Therefore, the plausibility of
the random walk model may be checked by comparing the variance esti-
mate of X~ - X~-~ to, say, one-half the variance estimate of Xt - Xt_ 2 . This
is the essence of our specification test ; the remainder of this section is de-
voted to developing the sampling theory required to compare the variances
quantitatively.

Suppose that we obtain 2n + 1 observations Xo, Xi, . . . , X2 n of Xt at
equally spaced intervals and consider the following estimators for the un-
known parameters ~ and ~ˆ

1 2n

	

1
~ = 2n ~ ( xk - Xk-~) =

2n
(Xzn - Xo)

	

(2 .1 .4a)
k=1
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1 2‰
Š€ =_ - ‹(‚k - ‚k_1-Œ) 2

2‰ k-ƒ
‰

2 1 ~

	

2
•6 - 2‰

	

(‚2k - ‚2k_2 - Ž̀Œ) .
k=1

(2 .1 .4b)

(2 .1.4c)

The estimators ~ and ~€ correspond to the maximum-likelihood estimators
of the ~ and ~ˆ parameters ; ~b is also an estimator of ~ˆ but uses only the
subset of n-f- 1 observations Xo, X2, X4, . . . , X2n and corresponds formally to
2 times the variance estimator for increments of even-numbered observa-
tions. Under standard asymptotic theory, all three estimators are strongly
consistent ; that is, holding all other parameters constant, as the total num-
ber of observations 2n increases without bound the estimators converge
almost surely to their population values. In addition, it is well known that
both ~€ and ~b possess the following Gaussian limiting distributions :

(~~ - ~ˆ) ^- N(0, 2~ˆ )

	

(2.1 .5a)

(mob - ~ˆ) ti N(0, 4~ˆ )

	

(2 .1 .5b)

where a, indicates that the distributional equivalence is asymptotic . Of
course, it is the limiting distribution of the difference of the variances that
interests us. Although it may readily be shown that such a difference is
also asymptotically Gaussian with zero mean, the variance of the limiting
distribution is not apparent since the two variance estimators are clearly not
asymptotically uncorrelated. However, since the estimator ~€ is asymptoti-
cally efficient under the null hypothesis H, we may apply Hausman's (1978)
result, which shows that the asymptotic variance of the difference is simply
the difference of the asymptotic variances . 3 If we define jd =- ~b - ~€ , then
we have the result

jd N N(0, 2~~ ) .

	

(2.1 .6)

Using any consistent estimator of the asymptotic variance of jd, a standard
significance test may then be performed . A more convenient alternative

3Briefly, Hausman (1978) exploits the fact that any asymptotically efficient estimator of
a parameter ~, say ~ e , must possess the property that it is asymptotically uncorrelated with
the difference ~~ - Vie , where ~~ is any other estimator of ~ . If not, then there exists a linear
combination of~e and ~a -Be that is more efficient than ~ e , contradicting the assumed efficiency
of ~ e . The result follows directly, then, since

aVar(~~) = aVar(~Q + ~• - ~~) = aVar(~e ) + aVar(~~ - ~Q )
~ aVar(~~ - Vi e) = aVar(~a ) - aVar(~e )

where aVar( …) denotes the asymptotic variance operator .
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test statistic is given by the ratio of the variances, jr;4

2
jr “

O2
- 1

	

2njr ti N(0, 2) …

	

(2.1.%)
~a

Although the variance estimator ~b is based on the differences of every
other observation, alternative variance estimators may be obtained by using
the differences of every qth observation . Suppose that we obtain nq + 1
observations Xo, Xl, . . . , Xny , where q is any integer greater than 1 . Define
the estimators :

1
nq

	

1
~, - - ~ (Xk - Xk_~) _ - (Xn q - Xo)

	

(2 .1 .8a)
nq k=1

	

nq

1
ng

~€ =_ - ~ (Xk - Xk_f - ~)2

	

(2 .1 .ˆb)
nq k-1
1

	

n
6b (q) -

	

~ (Xgk - X4k-4 gl.t) 2

	

(2 .1 .ˆC)
nq k=1

2

jd(Q) _ ~ˆ (Q) - 6€ ,

	

jr(Q) _ ~~q) - 1 .

	

(2 .1 .ˆd)
a

The specification test may then be performed using Theorem 2 .1 . 5

Theorem 2 .1 . Under the null hypothesis H, the asymptotic distributions ofjd (q) and
J,(q) are given by

~,jd(q) ^' N(~, 2(q - 1)mˆ)

	

(2.1 .9a)

jr(q) ti N(0, 2(q - 1)) .

	

(2.1.9b)

Two further refinements of the statistics jd and j, result in more desirable
finite-sample properties . The first is to use overlapping qth differences of Xt
in estimating the variances by defining the following estimator of ~ˆ

1

	

‰4

•2(q) =

	

2 ‹ (‚k - ‚k_q - qŒ)2 .
nq k=4

(2.1.10)

4Note that if (~~ ) 2 is used to estimate ~o , then the standard t-test of fd = 0 will yield
inferences identical to those obtained from the corresponding test of J, = 0 for the ratio,
since

frl

	

•6 - ••

	

Jr •(‘, ƒ~ .
~2•~

	

~ •’ -

SPro~fs of all the theorems are given in the Appendices .
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This differs from the estimator ~b (q) since this sum cˆntains nq- q+ 1 terms,
whereas the estimator ~b (q) contains only n terms. By using overlapping qth
increments, we obtain a more efficient estimator and hence a more powerful
test. Using ~2(q) in our variance-ratio test, we define the corresponding test
statistics for the difference and the ratio as

”•(q) _ ~2(q) - •• ”,(q) _-
•2

2q) - 1 .

	

(2 .L1‰
••

The second refinement involves using unbiased variance estimators in the
calculation of the M-statistics . Denote the unbiased estimators as ~€ and
~2(q), where

_

	

1

	

nq

•Q -

	

‹ lXk - Xk-1 - /-t) 2
nq - 1 k=t

1
nq

•2 = - ‹ (Xk - Xk-q
qŒ)2

m
k=4

m = q(nq - q+1) C1- 41
nq

and define the statistics :

2

	

2

	

~2(q)
Md (q) _- ~~ (q) - ~a ~

	

~ (q) _-

	

2 - 1 .
~a

(21.12a)

(2 .1 .12b)

(2.1 .13)

Although this does not yield an unbiased variance ratio, simulation experi-
ments show that the finite-sample properties of the test statistics are closer to
their asymptotic counterparts when this bias adjustment is made .ˆ Inference
for the overlapping variance differences and ratios may then be performed
using Theorem 2 .2 .

Theorem 2.2. Under the null hypothesis H, the asymptotic distributions of the statis-
tics Md(q), M,(q), Md(q), and M, (q) are gwen by

2(2q - ~(q - 1) 4Md(q) ^- nq Md(q) a, N CO,	
3
	~o

	

(2.1 .14a)
q

nq M,(q) ~, ~nq ~~q) ^~ N CO,
2(2q	-3	)(q -

1)
~ .

	

(2.L14b)
q

6According to the results of Monte Carlo experiments in Lo and MacKinlay (1989a), the
behavior of the bias-adjusted M-statistics (which we denote as Md(q) andMr(q)) does not depart
significantly from that of their asymptotic limits even for small sample sizes . Therefore, all cur
empirical results are based on the M,(q)-statistic .
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In practice, the statistics in Equations (2 .1 .14) may be standardized in the
usual manner (e.g ., define the (asymptotically) standard normal test statistic

z(q) _- ngMr(q)(2(2q- 1)(q- 1)/34)- ~~ 2 ,~, .~(~, 1)) …
To develop some intuition for these variance ratios, observe that for an

aggregation value q of 2, the M,(q)-statistic may be reexpressed as

Mr(2) _ ~~( 1) - 4n~2 ~(Xl - XO - l-t) 2 + (X2n - X2n-1 - 1-t) 2 ~ ~ ~~(1) …
a

(2.1.15)
Hence, for q = 2 the M,(q)-statistic is approximately the first-order auto-
correlation coefficient estimator p(1) of the differences . More generally, it
may be shown that

Mr(q) ~
2(q

-
1)

P(I) +
2(q - 2)

P(2) + . . . + 2 ~(q - 1)

	

(2.1.16)
q

	

q

	

4

where p(k) denotes the kth-order autocorrelation coefficient estimator of
the first differences of Xt.~ Equation (2 .1 .16) provides a simple interpre-
tation for the variance ratios computed with an aggregation value q : They
are (approximately) linear combinations of the first q - 1 autocorrelation
coefficient estimators of the first differences with arithmetically declining
weights . g

2. l .2 Heteroskedastic Increments

Since there is already a growing consensus among financial economists that
volatilities do change over time, 9 a rejection of the random walk hypothesis
because of heteroskedasticity would not be of much interest. We therefore
wish to derive a version of our specification test of the random walk model
that is robust to changing variances . As long as the increments are uncorre-
lated, even in the presence of heteroskedasticity the variance ratio must still
approach unity as the number of observations increase without bound, for
the variance of the sum of uncorrelated increments must still equal the sum
of the variances. However, the asymptotic variance of the variance ratios
will clearly depend on the type and degree of heteroskedasticity present .
One possible approach is to assume some specific form of heteroskedastic-
ity and then to calculate the asymptotic variance of Mr(q) under this null

See Equation (A.~ .6a) in the Appendix .
Mote the similarity between these variance ratios and the Box-Pierce Q-statistic, which is a

linear combination of squared autocorrelations with all the weights set identically equal to unity .
Although we may expect the finite-sample behavior of the variance ratios to be comparable to
that of the Q-statistic under the null hypothesis, they can have very different power properties
under various alternatives . See Lo and MacI{inlay (19†9a) for further details .

9 See, for example, Merton (1980), Poterba and Summers (1986), and French, Schwert,
and Stambaugh (1987) .



2.I . The Sj~ecification Test

	

25

hypothesis . However, to allow for more general forms of heteroskedastic-
ity, we employ an approach developed by White (1980) and by White and
Domowitz (1984) . This approach also allows us to relax the requirement of
Gaussian increments, an especially important extension in view of stock re-
turns' well-documented empirical departures from normality. 10 Specifically,
we consider the null hypothesis H* :~~

(Al) For all t, E(~~) = 0, and E(~ t ~ t_~) = 0 for any ~ ~ 0.
(A2) {~~} is ~-mixing with coefficients ~(m) of size r/(2r - 1) or is ~-

mixing with coefficients ce(m) of size r/(r - 1), where r > l, such
that for all t and for any ~ > 0, there exists some ~ > 0 for which

E~~t ~~ ~ X 21 '
+s) < ~ < oo .

	

(2.1 .17)
nq

(A3) lim 1 ~ E(~2) _ ~o < co .
nq-~oo rtq t=1

(A4) For all t, E(~ t ~ t_~ ~ t ~ t_k ) = 0 for any nonzero j and k where j ~ k .

This null hypothesis assumes that Xt possesses uncorrelated increments but
allows for quite general forms of heteroskedasticity, including deterministic
changes in the variance (due, for example, to seasonal factors) and Engle's
(1982) ARCH processes (in which the conditional variance depends on past
information) .

Since M,(q) still approaches zero under H*, we need only compute
its asymptotic variance (call it ~(q)) to perform the standard inferences .
We do this in two steps . First, recall that the following equality obtains
asymptotically :

Mr(q)
a
~

2(q
-
	j)

P(j) .

	

(2 .1 .18)
~-~

	

q

Second, note that under H* (condition 2 .1.2) the autocorrelation coeffi-
cient estimators ~(j) are asymptotically uncorrelated . 12 If we can obtain

~o Of course, second moments are still assumed to finite ; otherwise, the variance ratio is no
longerwell defined . This rules out distributions with infinite va•ance, such as those in the stable
Pareto-Levy family (with characteristic exponents that are less than 2) proposed by Mandelbrot
(1963) and Fama (1965) . We do, however, allow for many other forms of leptokurtosis, such as
thatgeneratedbyEngle's (1982) autoregressiveconditionallyheteroskedastic (ARCH) process .

~~Condition 2 .1 .2 is the essential property of the random walk that we wish to test . Condi-
tions 2 .1 .2 and 2 .1 .2 are restrictions on the maximum degree of dependence and heterogeneity
allowable while still permitting some form of the law of large numbers and the central limit
theorem to obtain . See White (1984) for the precise definitions of ~- and ~-mixing random
sequences. Condition 2 .1 .2 implies that the sample autocorrelations of ~t are asymptotically
uncorrelated; this condition may be weakened considerably at the expense of computational
simplicity (see note 12) .

12 Although this restriction on the fourth cross-moments of ~~ may seem somewhat unintu-
itive, it is satisfied for and process with independent increments (regardless of heterogeneity)
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asymptotic variances ~( j) for each of the p( j) under H*, we may readily cal-

culate the asymptotic variance ~(q) ofMr(q) as the weighted sum of the ~(j),

where the weights are simply the weights in relation (2 .1 .18) squared . More

formally, we have :

Theorem 2.3. Denote by ~ (j) and ~ (q) the asymptotic variances of p (j) and M, (q),
respectively. Then under the null hypothesis H* :

1. The statistics fd(q), Jr(q), Md(q), M,(q), Md(q), and M, (q) all converge
almost surely to zero for all q as n increases without bound .

2. The following is a heteroskedasticity-consistent estimator of ~ (j)

‰4

nq ‹ (‚• - ‚k-ƒ - ~)2 (~-j - ‚k-j-ƒ - /-c) 2
k=j+ 1

–(j) =	 2

	

(2 .1 .19)
ng

‹(Xk -ƒ—k_1 -1˜,) 2
k=1

3. The following is a heteroskedasti~ity-consistent estimator of ~ (q) :

™(q) - ‹
[2(qq
	j)

J
2 –(j) .

	

(2.L20)

Despite the presence of general heteroskedasticity, the standardized test

statistic z*(q) - ~ M,(q)/~ is still asymptotically standard normal. In
Section 2.2 we use the z*(q) statistic to test empirically for random walks in
weekly stock returns data .

2.2 The Random Walk Hypothesis for Weekly Returns

To test for random walks in stock market prices, we focus on the 1216-week
time span from September 6, 1962, to December 26, 1985 . Our choice of a
weekly observation interval was determined by several considerations . Since
our sampling theory is based wholly on asymptotic approximations, a large
number of observations is appropriate . While daily sampling yields many

and also for linear Gaussian ARCH processes. This assumption may be relaxed entirely, requir-
ing the estimation of the asymptotic covariances of the autocorrelation estimators in order to
estimate the limiting variance ~ of M,(q) via relation (2 .1 .18) . Although the resulting estima-
tor of ~ would be more complicated than Equation (2 .1 .20), it is conceptually straightforward
and may readily be formed along the lines of Newey and West (1987) . An even more general
(and possibly more exact) sampling theory for the variance ratios may be obtained using the
results of Dufour (1981) and Dufour and Roy (1985) . Again, this would sacrifice much of the
simplicity of our asymptotic results .
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observations, the biases associated with nontrading, the bid-ask spread, asyn-
chronous prices, etc., are troublesome. Weekly sampling is the ideal com-
promise, yielding a large number of observations while minimizing the bi-
ases inherent in daily data .

The weekly stock returns are derived from the CRSP daily returns file .
The weekly return of each security is computed as the return from Wednes-
day's closing price to the following Wednesday's close . If the following
Wednesday's price is missing, then Thursday's price (or Tuesday's if Thurs-
day's is missing) is used . If both Tuesday's and Thursday's prices are missing,
the return for that week is reported as missing. l3

In Section 2 .2.1 we perform our test on both equal- and value-weighted
CRSP indexes for the entire 1216-week period, as well as for 608-week sub-
periods, using aggregation values q ranging from 2 to 16 .14 Section 2 .2 .2
reports corresponding test results for size-sorted portfolios, and Section
2.2.3 presents results for individual securities .

2.2. 1 Results for Market Indexes

Tables 2 .l a and 2 .lb report the variance ratios and the test statistics z* (q) for
CRSP NYSE-AMEX market-returns indexes. Table 2 .la presents the results
for a one-week base observation period, and Table 2 .1b reports similar results
for a four-week base observation period . The values reported in the main
rows are the actual variance ratios [ M(q) + 1], and the entries enclosed in
parentheses are the z5 (q) statistics . l5

Panel A of Table 2.la displays the results for the CRSP equal-weighted
index. The first row presents the variance ratios and test statistics for the
entire 1216-week sample period, and the next two rows give the results for
the two 608-week subperiods. The random walk null hypothesis may be
rejected at all the usual significance levels for the entire time period and
all subperiods . Moreover, the rejections are not due to changing variances
since the z* (q) statistics are robust to heteroskedasticity. The estimates of the
variance ratio are larger than 1 for all cases . For example, the entries in the
first column of panel A correspond to variance ratios with an aggregation
value q of 2. In view of Equation (2.1 .15), ratios with q = 2 are approxi-
mately equal to 1 plus the first-order autocorrelation coefficient estimator
of weekly returns ; hence, the entry in the first row, 1 .30, implies that the

13 The average fraction (over all securities) of the entire sample where this occurs is less
than 0 .5 percent of the time for the 1216-week sample period .

14Additional empirical results (304-week subperiods, larger q values, etc .) are reported in
Lo and MacKinlay (1987b) .

15 Since the values of z* (q) are always smaller than the values of z(q) in our empirical results,
to conserve space we report only the more conservative statistics . Both statistics are reported
in Lo and MacKinlay (1987b) .
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Table 2.1a. Variance-ratio test of the random walk hypothesis for CRSP equal- and value-
weighted indexes, for the sample period from September 6, 1962, to December 26, 1985, and sub-
periods. The variance ratios 1 +M, (q) are reported in the main rows, with the heteroskedasticity-
robust test statistics z* (q) given in parentheses immediately below each main row. Under the
random walk null hypothesis, the value of the variance ratio is 1 and the test statistics have
a standard normal distribution (asymptotically). Test statistics marked with asterisks indicate
that the corresponding variance ratios are statistically different from 1 at the 5 percent level of
significance.

Time period
Number
nq of base

observations

Number q of base observations
aggregated to form variance ratio

2

	

4

	

8

	

16

A. Equal-weighted CRSP NYSE AMEX index

620906-851226

	

1216

	

1.30

	

1 .64

	

1.94

	

2.05
(7.51)*

	

(8.87)*

	

(8.48)*

	

(6.59)*

620906-740501

	

608

	

1.31

	

1 .62

	

1.92

	

2.09
(5.38)*

	

(6.03)*

	

(5.76)*

	

(4.77)*

740502-851226

	

608

	

1.28

	

1 .65

	

1.93

	

1 .91
(5.32)*

	

(6.52)*

	

(6.13)*

	

(4.17)*

B. Value-weighted CRSP NYSE-AMEX index

620906-851226

	

1216

	

1.08

	

1 .16

	

1.22

	

1 .22
(2.33)*

	

(2.31)*

	

(2.07)*

	

(1 .38)

620906-740501

	

608

	

1 .15

	

1 .22

	

1 .27

	

1 .32
(2 .89)*

	

(2.28)*

	

(1 .79)

	

(1 .46)

740502-851226

	

608

	

1 .05

	

1.12

	

1 .18

	

1 .10
(0.92)

	

(1.28)

	

(1 .24)

	

(0.46)

first-order autocorrelation for weekly returns is approximately 30 percent.
The random walk hypothesis is easily rejected at common levels of signifi-
cance. The variance ratios increase with q, but the magnitudes of the z*(q)
statistics do not . Indeed, the test statistics seem to decline with q ; hence, the
significance of the rejections becomes weaker as coarser-sample variances
are compared to weekly variances . Our finding of positive autocorrelation
for weekly holding-period returns differs from Fama and French's (1988)
finding of negative serial correlation for long holding-period returns . This
positive correlation is significant not only for our entire sample period but
also for all subperiods .

The rejection of the random walk hypothesis is much weaker for the
value-weighted index, as panel B indicates ; nevertheless, the general pat-
terns persist: the variance ratios exceed 1, and the z*(q) statistics decline as
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Table 2.1 b . Market index results for a four-week base observation period

Time period
Number
nq ofbase

observations

Number q of base observations
aggregated to form variance ratio

2

	

4

	

8

	

16

A. Equal-weighted CRSP NYSE-AMEX index

620906-851226

	

304

	

1.15

	

1.19

	

1.30

	

1 .30
(2.26)*

	

(1.54)

	

(1 .52)

	

(1 .07)

620906-740501

	

152

	

1.13

	

1.23

	

1 .40
(1.39)

	

(1.32)

	

(1 .46)
740502-851226

	

152

	

1.15

	

1 .11

	

1 .02
(1.68)

	

(0.64)

	

(0.09)

B. Value-weighted CRSP NYSE-AMEX index

620906-851226

	

304

	

1.05

	

1 .00

	

1 .11

	

1.07
(0.75)

	

(0.00)

	

(0.57)

	

(0.26)

620906-740501

	

152

	

1 .02

	

1 .04

	

1 .12
(0.26)

	

(0.26)

	

(0.46)

740502-851226

	

152

	

1 .05

	

0.95

	

0.89
(0.63)

	

(-0.31)

	

(-0.42)

Variance-ratio test of the random walk hypothesis for CRSP equal- and value-weighted indexes,
for the sample period from September 6, 1962, to December 26, 1985, and subperiods . The
variance ratios 1 + M,(q) are reported in the main rows, with the heteroskedasticit~-robust
test statistics z* (q) given in parentheses immediately below each main row. Under the random
walk null hypothesis, the value of the variance ratio is 1 and the test statistics have a stan-
dard normal distribution (asymptotically) . Test statistics marked with asterisks indicate that
the corresponding variance ratios are statistically different from 1 at the 5 percent level of
significance .

q increases . The rejections for the value-weighted index are due primarily
to the first 608 weeks of the sample period .

Table 2.1b presents the variance ratios using a base observation period
of four weeks ; hence, the first entry of the first row, 1 .15, is the variance
ratio of eight-week returns to four-week returns . With a base interval of four
weeks, we generally do not reject the random walk model even for the equal-
weighted index . This is consistent with the relatively weak evidence against
the random walk that previous studies have found when using monthly
data .

Although the test statistics in Tables 2 .1a and 2 .1b are based on nominal
stock returns, it is apparent that virtually the same results would obtain with
real or excess returns . Since the volatility of weekly nominal returns is so
much larger than that of the inflation and Treasury-bill rates, the use of
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nominal, real, or excess returns in a volatility-based test will yield practically
identical inferences .

2.2.2 Results for Size-Based Portfolios

An implication of the work of Keim and Stambaugh (1986) is that, cond~-
tional on stock and bond market variables, the logarithms of wealth relatives
of portfolios of smaller stocks do not follow random walks . For portfolios
of larger stocks, Keim and Stambaugh's results are less conclusive . Con-
sequently, it is of interest to explore what evidence our tests provide for
the random walk hypothesis for the logarithm of size-based portfolio wealth
relatives .

We compute weekly returns for five size-based portfolios from the NYSE-
AM€• universe on the CRSP daily returns file . Stocks with returns for
any given week are assigned to portfolios based on which quintile their
market value of equity is in . The portfolios are equal-weighted and have a
continually changing composition .~s The number of stocks included in the
portfolios varies from 2036 to 2720 .

Table 2 .2 reports the Mr(q) test results for the size-based portfolios, us-
ing a base observation period of one week . Panel A reports the results for
the portfolio of small firms (first quintile), panel B reports the results for
the portfolio of medium-size firms (third quintile), and panel C reports
the results for the portfolio of large firms (fifth quintile) . Evidence against
the random walk hypothesis for small firms is strong for all time periods
considered; in panel A all the z*(q) statistics are well above 2 .0, ranging
from 6.12 to 11 .92. As we proceed through the panels to the results for the
portfolio of large firms, the z*(q) statistics become smaller, but even for the
large-firms portfolio the evidence against the null hypothesis is strong . As
in the case of the returns indexes, we may obtain estimates of the first-order
autocorrelation coefficient for returns on these size-sorted portfolios simply
by subtracting 1 from the entries in the q = 2 column . The values in Table
2.2 indicate that the portfolio returns for the smallest quintile have a 42
percent weekly autocorrelation over the entire sample period! Moreover,
this autocorrelation reaches 49 percent in subperiod 2 (May 2, 1974, to De-
cember 26, 1985) . Although the serial correlation for the portfolio returns
of the largest quintile is much smaller (14 percent for the entire sample
period), it is statistically significant .

~sWe also performed our tests using value-weighted portfolios and obtained essentially
the same results . The only difference appeared in the largest quintile of the value-weighted
portfolio, for which the random walk hypothesis was generally not rejected . This, of course,
is not surprising, given that the largest value-weighted quintile is quite similar to the value-
weighted market index.
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Table 2.2. Variance-ratio test of the random walk hypothesis for size-sorted portfolios, for the
sample period from September 6, 1962, to December 26, 1985, and subperiods. The variance
ratios 1 ~- M,(q) are reported in the main rows, with the heteroskedasticity-robust test statistics
z*(q) gwen in parentheses immediately below each main row . Under the random walk null
hypothesis, the value of the variance ratio is 1 and the test statistics have a standard normal dis-
tribution (asymptotically) . Test statistics marked with asterisks indicate that the corresponding
variance ratios are statistically different from I at the 5 percent level of significance .

Time period
Number
nq of base

observations

Number q of base observations aggregated
to form variance ratio

2

	

4

	

8

	

16

A. Portfolio of firms with market values in smallest NYSE-AMEX quintile

620906-851226

	

1216

	

1 .42

	

1.97

	

2.49

	

2.68
(8.81)*

	

(11.58)*

	

(11 .92)*

	

(9.65)*

620906-740501

	

608

	

1.37

	

1.83

	

2.27

	

2.52
(6.12)*

	

(7.83)*

	

(7.94)*

	

(6.68)*

740502-851226

	

608

	

1.49

	

2 .14

	

2.76

	

2.87
(6.44)*

	

(8.66)*

	

(9.06)*

	

(7.06)*

B. Portfolio of firms with market values in central NYSE-AMEX quintile

620906-851226

	

1216

	

1 .28

	

1 .60

	

1.84

	

1.91
(7.38)*

	

(8.37)*

	

(7.70)*

	

(5.78)*

620906-740501

	

608

	

1 .30

	

1 .59

	

1.85

	

2.01
(5.31)*

	

(5.73)*

	

(5.33)*

	

(4.42)*

740502-851226

	

608

	

1 .27

	

1 .59

	

1.80

	

1 .69
(5.31)*

	

(5.73)*

	

(5.33)*

	

(4.42)*

C. Portfolio of firms with market values in largest NYSE-AMEX quintile

620906-851226

	

1216

	

1.14

	

1.27

	

1 .36

	

L 34
(3.82)*

	

(3.99)*

	

(3.45)*

	

(2.22)*

620906-740501

	

608

	

1.21

	

1 .36

	

1 .45

	

1.44
(4.04)*

	

(3.70)*

	

(2.96)*

	

(2.02)*

740502-851226

	

608

	

1 .09

	

1 .20

	

1 .27

	

1.18
(1 .80)

	

(2.18)*

	

(1 .95)

	

(0.87)

Using a base observation interval of four weeks, much of the evidence
against the random walk for size-sorted portfolios disappears . Although the
smallest-quintile portfolio still exhibits a serial correlation of 23 percent with
a z*(2) statistic of 3 .09, none of the variance ratios for the largest-quintile
portfolio is significantly different from 1 . In the interest of brevity, we do not
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report those results here but refer interested readers to Lo and MacKinlay
(1987b) .

The results for size-based portfolios are generally consistent with those
for the market indexes. The patterns of (1) the variance ratios increasing
in q and (2) the significance of rejections decreasing in q that we observed
for the indexes also obtain for these portfolios . The evidence against the
random walk hypothesis for the logarithm of wealth relatives of small-firms
portfolios is strong in all cases considered . For larger firms and a one-week
base observation interval, the evidence is also inconsistent with the random
walk; however, as the base observation interval is increased to four weeks,
our test does not reject the random walk model for larger firms .

2.2.3 Results for Individual Securities

For completeness, we performed the variance-ratio test on all individual
stocks that have complete return histories in the CRSP database for our en-
tire 1216-week sample period, yielding a sample of 625 securities . Owing to
space limitations, we report only a brief summary of these results in Table
2.3 . Panel A contains the cross-sectional means of variance ratios for the en-
tire sample as well as for the 100 smallest, 100 intermediate, and 1001argest
stocks. Cross-sectional standard deviations are given in parentheses below
the main rows. Since the variance ratios are clearly not cross-sectionally
independent, these standard deviations cannot be used to form the usual
tests of significance ; they are reported only to provide some indication of
the cross-sectional dispersion of the variance ratios .

The average variance ratio for individual securities is less than unity
when q = 2, implying that there is negative serial correlation on average .
For all stocks, the average serial correlation is -3 percent, and -6 percent
for the smallest 100 stocks . However, the serial correlation is both statis-
tically and economically insignificant and provides little evidence against
the random walk hypothesis. For example, the largest average z*(q) statistic
over all stocks occurs for q = 4 and is -0.90 (with a cross-sectional standard
deviation of 1 .19) ; the largest average z*(q) for the 100 smallest stocks is
-1.67 (for q = 2, with a cross-sectional standard deviation of 1 .75) . These
results complement French and Roll's (1986) finding that daily returns of
individual securities are slightly negatively autocorrelated .

For comparison, panel B reports the variance ratios of equal- and value-
weighted portfolios of the 625 securities . The results are consistent with
those in Tables 2 .1 and 2 .2; significant positive autocorrelation for the equal-
weighted portfolio, and less significant positive autocorrelation for the value-
weighted portfolio .

That the returns of individual securities have statistically insignificant au-
tocorrelation is not surprising . Individual returns contain much company-
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Table 2.3. Means of variance ratios over all individual securities with complete return histo-
Ties from September 2, 1962, to December 26, 1985 (625 stocks) . Means of variance ratios for
the smallest l00 stocks, the intermediate I00 stocks, and the largest I00 stocks are also reported .
For purposes of comparison, panel B reports the variance ratios for equal- and value-weighted
portfolios, respectively, of the 625 stocks . Parenthetical entries for averages of individual se-
curities (panel A) are standard deviations of the cross-section of variance ratios . Because the
variance ratios are not cross-sectionally independent, the standard deviation cannot be used
to perform the usual significance tests; they are reported only to provide an indication of the
variance ratios' cross-sectional dispersion . Parenthetical entries for portfolio variance ratios
(panel B) are the heteroskedasticity-robust z*(q) statistics . Asterisks indicate variance ratios
that are statistically different from 1 at the 5 percent level of significance.

Sample
Number
nq of base

observations

A. Averages of variance ratios over individual securities

All stocks

	

1216

	

0.97

	

0.94

	

0.92

	

0.89
(625 stocks)

	

(0.05)*

	

(0.08)

	

(0.11)

	

(0.15)

Small stocks

	

1216

	

0.94

	

0.91

	

0.90

	

0.88
(100 stocks)

	

(0.06)

	

(0.10)

	

(0.13)

	

(0.18)

Medium stocks

	

1216

	

0.98

	

0.97

	

0.96

	

0.93
(100 stocks)

	

(0.05)

	

(0.09)

	

(0.12)

	

(0.15)

Large stocks

	

1216

	

0.97

	

0.94

	

0.86

	

0.86
(100 stocks)

	

(0.04)

	

(0.07)

	

(0.11)

	

(0.17)

B. Variance ratios of equal- and value-weighted portfolios of all stocks

Equal-weighted portfolio

	

1216

	

1 .21

	

1.64

	

1.65

	

1.76
(625 stocks)

	

(5.94)*

	

(6.71)*

	

(6.06)*

	

(4.25)*

Value-weighted portfolio

	

1216

	

1 .04

	

1.08

	

1.12

	

1.12
(625 stocks)

	

(1 .30)

	

(1.24)

	

(1 .16)

	

(0.76)

Number q of base observations
aggregated to form variance ratio

2

	

4

	

8

	

16

specific, or "idiosyncratic," noise that makes it difficult to detect the presence
of predictable components. Since the idiosyncratic noise is largely attenu-
ated by forming portfolios, we would expect to uncover the predictable
"systematic" component more readily when securities are combined . Nev-
ertheless, the negativity of the individual securities' autocorrelations is an
interesting contrast to the positive autocorrelation of the portfolio returns .
Since this is a well-known symptom of infrequent trading, we consider such
an explanation in Section 2.3 .
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2.3 Spurious Autocorrelation Induced by Nontrading

Although we have based our empirical results on weekly data to minimize
the biases associated with market microstructure issues, this alone does not
ensure against the biases' possibly substantial influences . In this section we
explicitly consider the conjecture that infrequent or nonsynchronous trad-
ing may induce significant spurious correlation in stock returns . t~ The com-
mon intuition for the source of such artificial serial correlation is that small
capitalization stocks trade less frequently than larger stocks . Therefore,
new information is impounded first into large-capitalization stock prices
and then into smaller-stock prices with a lag. This lag induces a positwe
serial correlation in, for example, an equal-weighted index of stock returns .
Of course, this induced positive serial correlation would be less pronounced
in a value-weighted index . Since our rejections of the random walk hypoth-
esis are most resounding for the equal-weighted index, they may very well
be the result of this nontrading phenomenon . To investigate this possibility,
we consider the following simple model of nontrading . 18

Suppose that our universe of stocks consists of N securities indexed by
i, each with the return-generating process

~‚ = R,,~~ + ƒ~~

	

i = 1, . . . , „

	

(2.3.1)

where R,,~ t represents a factor common to all returns (e.g., the market)
and is assumed to be an independently and identically distributed (IID)
random variable with mean ~,,~ and variance ~,~ . The ~ tt term represents
the idiosyncratic component of security is return and is also assumed to be
IID (over both i and t), with mean 0 and variance ~M. The return-generating
process may thus be identified with N securities each with a unit beta such
that the theoretical R2 of a market-model regression for each security is 0.50 .

Suppose that in each period t there is some chance that security i does
not trade . One simple approach to modeling this phenomenon is to distin-
guish between the observed returns process and the virtual returns process .
For example, suppose that security i has traded in period t - 1 ; consider its
behavior in period t. If security i does not trade in period t, we define its vir-

17 See, for example, Scholes and Williams (1977) and Cohen, Hawawini, Maier, Schwartz,
and Whitcomb (1983a) .

18 Although our model is formulated in discrete time for simplicity, it is in fact slightly
more general than the Scholes and Williams (1977) continuous-time model of nontrading .
Specifically, Scholes and Williams implicitly assume that each security trades at least once within
a given time interval by "ignoring periods overwhich no trades occur" (page 311), whereas our
model requires no such restriction . As a consequence, it may be shown that, ceteris paribus, the
magnitude of spuriously induced autocorrelation is lower in Scholes and Williams (1977) than
in our framework . However, the qualitative predictions of the two models of nontrading are
essentially the same . For example, both models imply that returns for individual securities will
exhibit negative serial correlalion but that portfolio returns will be positively autoc~rrelated .
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tual return as 1~~ (which is given by Equation (2.3 .1) ), whereas its observed
return R~ is zero . If security i then trades at t+ 1, its observed return Ri+~ is
defined to be the sum of its virtual returns ~~ and Rid+~ ; hence, nontrading
is assumed to cause returns to cumulate . The cumulation of returns over pe-
riods of nontrading captures the essence of spuriously induced correlations
due to the nontrading lag.

To calculate the magnitude of the positive serial correlation induced by
nontrading, we must specify the probability law governing the nontrading
event. For simplicity, we assume that whether or not a serucity trades may
be modeled by a Bernoulli trial, so that in each period and for each security
there is a probability p that it trades and a probability 1 - p that ~s does
not. It is assumed that these Bernoulli trials are IID across securities and,
for each security, are IID over time . Now consider the observed return Rr…
at time t of an equal-weighted portfolio :

The observed return R~ for security i may be expressed as

R ~ = X~~(0)R~~ ~- Xi~(1)R~r-~ -F X~t(2)~~-2 + . . .

	

(2.3 .3)

where X~~(j), j = l, 2, 3, . . . are random variables defined as

~ O- 1
if i trades at t

	

2.3.4a~~( )

	

0 otherwise

	

(

	

)

~zL(1) - 1 if i does not trade at t - 1 and i trades at t

	

(2.3.4b)
0 otherwise

_ 1 if i trades at t and does not trade at t 1 and t 2X22(2) - 0 otherwise

	

(2.3.4c)

The X21 ( j) variables are merely indicators of the number of consecutive pe-
riods before t in which security j has not traded. Using this relation, we
have

Rj =-
„ † R~ ‡

	

(2.3 .2)

1
„

	

ˆ „

	

1 „
R‚… = „ † Xiz(0)R‚‚ + „ † •i‚(1)~‚-‚ + „ † •it(2)R‰i-2 + . . .

(2.3 .5)
For large N, it may readily be shown that because the ~ i2 component of each
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security's return is idiosyncratic and has zero expectation, the following
approximation obtains :

N

	

N

	

N

R~… ^-' N ~ X~~(~)RM~ + N ~ XŠt( 1)RM~-1 + N ~ Xi~(2)RMt-2 ~- . . .
~

	

~
(2.3.6)

Itis also apparent that the averages (1/N) ~N XZ~( j) become arbitrarily close,
again for large N, to the probability of j consecutive no-trades followed by
a trade; that is,

„
p1imN~‹

„ † Œt•(j) = Ž(1 - Ž)' ‡

	

(2.3.7)

The observed equal-weighted return is then given by the approximation

R•… ^-' pRM~ + ~(1 - ~)Rn~~-~ + ~(1 - ~) 2Rn~~-2 + . . .

	

(2.3.8)

Using this expression, the general jth-order autocorrelation coefficient p (j)
may be readily computed as

C•‘(Rr…, R~ ~)
p(J) =

	

Var(R~…)

	

- (1 - Ž)~
.

	

(2 .3.9)

Assuming that the implicit time interval corresponding to our single period
is one trading day, we may also compute the weekly (five-day) first-order
autocorrelation coefficient of R~… as

p`v(1) _
p(1)+2~(2)+ ‡ ‡ ‡ + 5Ž(5)+4~(6)+ ‡ ‡ ‡ + ~(9)

	

(23.10)
5 + 8~(1) + 6~(2) + 4p(3) + 2~(4)

By specifying reasonable values for the probability of nontrading, we may
calculate the induced autocorrelation using Equation (2.3.10) . To develop
some intuition for the parameter ~, observe that the total number of secu-
tities that trade in any given period t is given by the sum ~N Xit (0) . Under
our assumptions, this random variable has a binomial distribution with pa-
rameters (N, ~) ; hence, its expected value and variance are given by N~ and
N’(1 - ~), respectively. Therefore, the probability p may be interpreted as
the fraction of the total number of N securities that trades on average in
any given period. A value of .90 implies that, on average, 10 percent of the
securities do not trade in a single period .

Table 2 .4 presents the theoretical daily and weekly autocorrelations in-
duced by nontrading for nontrading probabilities of 10 to 50 percent. The
first row shows that when (on average) 10 percent of the stocks do not trade
each day, this induces a weekly autocorrelation of only 2 .1 percent! Even
when the probability of nontrading is increased to 50 percent (which is quite
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Table 2.4. SEiur~ously induced autocorrelations are re’ortedfor nontrading~robabilities 1- p
of l0 to 50 E~ercent. In the absence of the nontrading E~henomenon, the theoretical values of
daily jth-order autocorrelations ~(j) and the meekly first-order autocorrelation ~W(1) are all
zero.

1 -Ž

	

“(1)

	

“(2)

	

“~3)

	

“‰4)

	

Ž‰5)

	

Ž”~1)

.10

	

.1000

	

.0100

	

.0010

	

.0001

	

.0000

	

.0211

.20

	

.2000

	

.0400

	

.0080

	

.0016

	

.0003

	

.0454

.30

	

.3000

	

.0900

	

.0270

	

.0081

	

.0024

	

.0756

.40

	

.4000

	

.1600

	

.0640

	

.0256

	

.0102

	

.1150

.50

	

.5000

	

.2500

	

.1250

	

.0625

	

.0312

	

.1687

unrealistic), the induced weekly autocorrelation is 17 percent . 19 We con-

clude that our rejection of the random walk hypothesis cannot be attributed

solely to infrequent trading .

The positive autocorrelation of portfolio returns and the negative auto-

correlation of individual securities is puzzling . Although our stylized model

suggests that infrequent trading cannot fully account for the 30 percent au-

tocorrelation of the equal-weighted index, the combination of infrequent

19 Several other factors imply that the actual sizes of the spurious autocorrelations induced
by infrequent trading are lower than those given in Table 2 .4. For example, in calculating the
induced correlations using Equation (2 .3.9), we have ignored the idiosyncratic components
in returns because diversification makes these components trivial in the limit ; in practice,
perfect diversification is never achieved . But any residual risk increases the denominator of
Equation (2 .3.9) and does not necessarily increase the numerator (since the ~q~'s are cross-
sectionally uncorrelated) . To see this explicitly, we simulated the returns for 1000 stocks over
5120 days, calculated the weekly autocorrelations for the virtual returns and for the observed
returns, computed the difference of those autocorrelations, repeated this procedure 20 times,
and then averaged the differences. With a (daily) nontrading probability of 10 percent, the
simulations yield a difference in weekly autocorrelations of 2.1 percent, of 4 .3 percent for a
nontrading probability of 20 percent, and of 7 .6 percent for a nontrading probability of 30
percent.

Another factor that may reduce the spurious positive autocorrelation empirically is that,
within the CRSP files, if a security does not trade, its price is reported as the average of the
bid-ask spread . As long as the specialist adjusts the apread to reflect the new information, even
if no trade occurs the reported CRSP price will reflect the new information . Although there
may still be some delay before the bid-ask spread is adjusted, it is presumably less than the lag
between trades .

Also, if it is assumed that the probability of no-trades depends upon whether or not the
security has traded recently, it is natural to suppose that the likelihood of a no-trade tomorrow
is lower if there is a no-trade today. In this case, it may readily be shown that the induced
autocorrelation is even lower than that computed in our IID framework .
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trading and Roll's (1984a) bid-ask effect may explain a large part of the
small negative autocorrelation in individual returns .

One possible stochastic model that is loosely consistent with these obser-
vations is to let returns be the sum of a positively autocorrelated common
component and an idiosyncratic white-noise component . The common
component induces significant positive autocorrelation in portfolios since
the idiosyncratic component is trivialized by diversification . The white-noise
component reduces the positive autocorrelation of individual stock returns,
and the combination of infrequent trading and the bid-ask spread effects
drives the autocorrelation negative . Of course, explicit statistical estimation
is required in order to formalize such heuristics and, ultimately, what we
seek is an economic model of asset prices that might give rise to such em-
piricalfindings. This is beyond the scope of this chapter, but it is the focus
of current investigation .

2.4 The Mean -Reverting Alternative to the Random Walk

Although the variance-ratio test has shown weekly stock returns to be in-
compatible with the random walk model, the rejections do not offer any
explicit guidance toward a more plausible model for the data . However,
the patterns of the test's rejections over different base observation intervals
and aggregation values q do shed considerable light on the relative merits
of competing alternatives to the random walk . For example, one currently
popular hypothesis is that the stock-returns process may be described by
the sum of a random walk and a stationary mean-reverting component, as
in Summers (1986) and in Fama and French (1988) . 20 One implication of
this alternative is that returns are negatively serially correlated for all hold-
ing periods . Another implication is that, up to a certain holding period, the
serial correlation becomes more negative as the holding period increases . 21
If returns are in fact generated by such a process, then their variance ratios

20Shiller and Perron (1985) propose only a mean-reverting process (the Ornstein-
Uhlenbeck process), whereas Poterba and Summers (1988) propose the sum of a random
walk and a stationary mean-reverting process . Although neither study offers and theoretical
justification for its proposal, both studies motivate their alternatives as models of investors'
fads .

t~If returns are generated by the sum of a random walk and a stationary mean-reverting
process, their serial correlation will be a U-shaped function of the holding period ; the first-order
autocorrelation becomes more negative as shorter holding periods lengthen, but it graudally
returtts to zero for longer holding periods because the random walk component dominates .
The curvature of this U-shaped function depends on the relative variability of the random walk
•–d mean-reverting components . Fama and French's (1988) parameter estimates imply that
the autocorrelation coefficient is monotonically decreasing for holding periods up to three
years ; that is, the minimum of the U-shaped curve occurs at a holding period greater than or
equal to three years .
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should be less than unity when q = 2 (since negative serial correlation is
implied by this process) . Also, the rejection of the random walk should
be stronger as q increases (larger z*(q) values for larger q) . 22 But Tables
2.1 and 2.2 and those in Lo and MacKinlay (1987b) show that both these
implications are contradicted by the empirical evidence .23 Weekly returns
do not follow a random walk, but they do not fit a stationary mean-reverting
alternative any better .

Of course, the negative serial correlation in Fama and French's (1988)
study for long (three- to five-year) holding-period returns is, on purely theo-
retical grounds, not necessarily inconsistent with positive serial correlation
for shorter holding-period returns . However, our results do indicate that the
sum of a random walk and a mean-reverting process cannot be a complete
description of stock-price behavior .

2.5 Conclusion

We have rejected the random walk hypothesis for weekly stock market
returns by using a simple volatility-based specification test . These rejec-
tions cannot be explained completely by infrequent trading or time-varying
volat~lities. The patterns of rejections indicate that the stationary mean-
reverting models of Shiller and Perron (1985), Summers (1986), Poterba
and Summers (1988), and Fama and French (1988) cannot account for the
departures of weekly returns from the random walk .

As we stated in the introduction, the rejection of the random walk model
does not necessarily imply the inefficiency of stock-price formation. Our re-
sults do, however, impose restrictions upon the set of plausible economic
models for asset pricing; any structural paradigm of rational price forma-
tion must now be able to explain this pattern of serial correlation present
in weekly data. As a purely descriptive tool for examining the stochastic
evolution of prices through time, our specification test also serves a use-
ful purpose, especially when an empirically plausible statistical model of
the price process is more important than a detailed economic paradigm of
equilibrium . For example, the pricing of complex financial claims often
depends critically upon the specific stochastic process driving underlying
asset returns . Since such models are usually based on arbitrage consider-
ations, the particular economic equilibrium that generates prices is of less
consequence . One specific implication of our empirical findings is that

22This pattern of stronger rejections with larger q is also only true up to a certain value of
q . In view of Fama and French's (1988) results, this upper limit for q is much greater than 16
when the base observation interval is one week . See note 21 .

23 See Lo and MacKinlay (1989a) for explicit power calculations against this alternative and
against a more empirically relevant model of stock prices .
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the standard Black-Scholes pricing formula for stock index options is mis-
specified .

Although our variance-based test may be used as a diagnostic check for
the random walk specification, it is a more difficult task to determine pre-
cisely which stochastic process best fits the data . The results of French and
Roll (1986) for return variances when markets are open versus when they
are closed add yet another dimension to this challenge . The construction
of a single stochastic process that fits both short and long holding-period
returns data is one important direction for further investigation . However,
perhaps the more pressing problem is to specify an economic model that
might give rise to such a process for asset prices, and this will be pursued in
subsequent research .



Proof of Theorem 2 .1

Under the IID Gaussian distributional assumption of the null hypothesis H,
~Š and ~b are maximum-likelihood estimators of ~~ with respect to data
sets consisting of every observation and of every qth observation, respec-
tively (the dependence of ~b on q is suppressed for notational simplicity) .
Therefore, it is well known that

(~Š - ~˜) a, N(0, 2~0 )

	

(A2.1)
a

nq (™b - ~˜) ^~ N(~, 2~~ ) .

	

(A22)

Since, under the null hypothesis H, ~Š is the maximum-likelihood estimator
of~~ using every observation, it is asymptotically efficient . Therefore, follow-
ing Hausman's (1978) approach, we conclude that the asymptotic variance
of ~(~b - ~Š) is simply the difference of the asymptotic variances of

~(~b - ~~) and nq(~Š - ~˜) . Thus, we have

~fd(r) _ ~(db - ~~) ti N(~, 2(q - 1)m˜ ) . (A2.3)

The asymptotic distribution of the ratio then follows by applying the "delta
method" to the quantity nq(g(~Š , ~b) - g(’˜ , ~˜)), where the bivariate
function g is defined as g(u, v) - v/u; hence,
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Appendix A2
Proof of Theorems

~]š(q) _ ~ ~
™2

- 11 ~ „(0, 2(q - 1))
/•

(—2.4)

Q.E.D .
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Ap’endix —2

Proof of Theorem 2 .2

To derive the limiting distributions of ~ Md and ~ M› we require the
asymptotic distribution of ~(~~ - ~o) (the dependence of ~2 on q is sup-
pressed for rotational convenience) . Our approach is to reexpress this vari-
ance estimator as a function of the autocovariances of the (Xk - Xk_q ) terms
and then employ well-known limit theorems for autocovariances. Consider
the quantity

_ 1 nq
™ 2 _ nq2 ~(œk-‚•k 4-qž )2

- 1 ~ q
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Ÿ
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Y(0) op(~ i ~ 2 ) + 2(q- 1)
Y(1) - ~p(n i ~2 )

4
+ 2(q - 2)

£(2) - op(n ~~ 2) + . . . + 2 £(q - 1)

	

(A2.6c)
q

	

q

where y(j) _ (1/nq) ~~9~+~ ~k~k_~ and o~(¤ i~ 2) denotes a quantity that
is of an order smaller than

n-1~2 in probability. Now define the (q x 1)
vector ~ _ [y(0) y(1) . . . ~(q - 1)]' . A standard limit theorem for sample
autocovariances y of a stationary time series with independent Gaussian
increments is (see, for example, Fuller, 1976, chap . 6.3)

~J
~(£ - ~˜ e~~)

	

N[0. ~˜ (Iq + e~ ei)]

	

(A2.7)

where ei is the (q x 1) vector [10 . . . 0]' and Iq is the identity matrix of order
q . Returning to the quantity ~(~2 - ~~), we have

2(q - 1) ..
~(d2 - ~˜ ) ~[(£ ~0) ~˜) +	qY (1) + . . .

+
2

£ (q - 1)] - nq op(n-'~ 2 ) .

	

(A2.8)
q

Combining Equations (A2.7) and (A2.8) then yields the following result :

where

~(~2 - ™¢) ^' „(0, ‘~) (A2.9a)
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Given the asymptotic distributions (A2 .1) and (A2.5), Hausman's (1978)
method may be applied in precisely the same manner as in Theorem 2 .1 to
yield the desired result :

ngMd(q) ^~ N CO,
2(2q-3)(q-1)

~o ~
/q

~M,(q) ~ N (o, 2(2q- 1>(q- ~l
\

	

3q

The distributional results for Md (q) and M, (q) follow immediately since
asymptotically these statistics are equivalent to Md(q) and M, (q), respectively.

Q.E.D .
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Appendix A2

Proof of Theorem 2 .3

1. We prove the result for M r (q) ; the proofs for the other statistics follow
almost immediately from this case . Define the increments process as

Y~ _- X~ - X~-~ and define p(~) as

“( )
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Consider first the numerator A(~) of p(~) :
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Since ~ converges almost surely (a .s .) to ~, the first term of Equation
(A2.11˜) converges as. to zero as nq ~ oo. Moreover, under condition
2.1 .2 it is apparent that {~ t } satisfies the conditions of White's (1984)
corollary 3.48; hence, H*'s condition 2 .1 .2 implies that the second and
third terms of (A2 .1 lb) also vanish a .s. Finally, because ~ t ~ t _~ is clearly a
measurable function of the i t 's, {~ t ~ t _ r }, is also mixing with coefficients
of the same size as {~ t } . Therefore, under condition 2 .1 .2, corollary 3 .48
of White (1984) may also be applied to {~ t ~ t _~}, for which condition
2.1 .2 implies that the fourth term of Equation (A2 .1 lb) converges a .s .
to zero as well . By similar arguments, it may also be shown that

nq

¥(š) -
1

†(1't - /.L) 2 ~ ¦¢
nq z=1

as .
Therefore, we have p(~) -i 0 for all ~ ~ 0 ; hence, we conclude that

as .
ª•(q) ~ 0 as nq -~ •• .

(A2.12)

2. By considering the regression of increments ~Xt on a constant term and
lagged increments ~Xt_~, this follows directlyfrom White and Domowitz
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(1984) . Taylor (1984) also obtains this result under the assumption
that the multivariate distribution of the sequence of disturbances is
syrr~metric .

3. This result follows trivially from Equation (2 .1.14a) and condition 2 .1 .2 .
Q.E.D .



The Size and Power of the
Variance Ratio Test in Finite Samples :

A Monte C arlo Investigation

3.1 Introduction

WHETHER oR NoT an economic time series follows a random walk has long
been a question of great interest to economists . Although its origins lie in
the modelling of games of chance, the random walk hypothesis is also an
implication of many diverse models of rational economic behavior . l Several
recent studies have tested the random walk theory of exploiting the fact that
the variance of random walk increments is linear in the sampling interval . 2
Therefore the variance o~ for example, quarterly increments must be three
times as large as the variance of monthly differences . Comparing the (per
unit time) variance estimates from quarterly to monthly data will then yield
an indication of the random walk's plausibility. Such a comparison may be
formed quantitatively along the lines of the Hausman (1978) specification
test and is developed in Lo and MacKinlay (1988b) . Due to intractable non-
linearities, the sampling theory of Lo and MacKinlay is based on standard
asymptotic approximations .

In this chapter, we investigate the quality of those approximations under
the two most commonly advanced null hypotheses : the random walk with
independently and identically distributed Gaussian increments, and with
uncorrelated but heteroskedastic increments . Under both null hypotheses,
the variance ratio test is shown to yield reliable inferences even for moderate
sample sizes. Indeed, under a specific heteroskedastic null the variance ratio

t See, for example, Gould and Nelson (1974), Hall (1978), Lucas (1978), Shiller (1981),
Kleidon (1986), and Marsh and Merton (1986) .

2 See, for example, Campbell and Mankiw (1987), Cochrane (1987b, 1987c), Huizinga
(1987), Lo and MacKinlay (1988b), and Poterba and Summers (1988) .
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3. The Size and Power of the Variance Ratio Test

test is somewhat more reliable than both the Dickey-Fuller t and Box-Pierce
portmanteau tests .

We also compare the power of these tests against three empirically inter-
esting alternative hypotheses : a stationaryAR(1) which has been advanced
as a model of stock market fads, the sum of this AR(1) and a pure random
walk, and an ARIMA(1, 1, 0) which is more consistent with stock market
data. Although the Dickey-Fuller t-test is more powerful than the Box-Pierce
Q-test against the first alternative and vice versa against the second, the vari-
ance ratio test is comparable to the most powerful of the two tests against
the first alternative, and more powerful against the second two alternatives
when the variance ratio's sampling intervals are chosen appropriately.

Since the random walk is closely related to what has come to be known
as a `unit root' process, a few comments concerning the variance ratio test's
place in the unit root literature are appropriate . It is obvious that the
random walk possesses a unit root . In addition, random walk increments
are required to be uncorrelated . Although earlier studies of unit root tests
(e .g., Dickey and Fuller, 1979, 1981) also assumed uncorrelated increments,
Phillips (1986, 1987), Phillips and Perron (1988), and Perron (1986) show
that much of those results obtain asymptotically even when increments are
weakly dependent. 3 Therefore, the random walk model is a proper subset
of the unit root null hypothesis . This implies that the power of a consistent
unit root test against the random walk hypothesis will converge to the size
of the test asymptotically .

The focus of random walk tests also differs from that of the unit root
tests. This is best illustrated in the context of Beveridge and Nelson's (1981)
decomposition of a unit root process into the sum of a random walk and
a stationary process . 4 Recent applications of unit root tests propose the
null hypothesis that the random walk component does not exist, whereas
tests of the random walk have as their null hypothesis that the stationary
component does not exist . 5

Since there are some important departures from the random walk that
unit root tests cannot detect, the variance ratio test is preferred when the
attribute of interest is the uncorrelatedness of increments. Moreover, in
contrast to the dependence of the unit root test statistics' distributions on
nuisance parameters, the variance ratio's limiting distribution is Gaussian
and independent of any nuisance parameters . s Although we report simula-

3Dicke~ and Fuller (1979, 1981) make the stronger assumption of independently and
identically distributed Gaussian disturbances .

4Also, see Cochrane (1987c) who uses this fact to show that trend-stationarity and
difference-stationarity cannot be distinguished with a finite amount of data.

5We are grateful to one of the two referees for this insight .
6 The usual regression t-statistic's limiting distribution depends discontinuously on the

presence or absence of a nonzero drift (see Nankervis and Savin, 1985 ; Perron, 1986) . This
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tion results for the Dickey-Fuller t and the Box-Pierce Q-tests for compari-
son with the performance of the variance ratio test, we emphasize that these
three tests are not direct competitors since they have been designed with
different null hypotheses in mind .

The chapter is organized as follows . In Section 3.2 we define the vari-
ance ratio statistic, summarize its asymptotic sampling theory, and define
the Dickey-Fuller and Box-Pierce tests . Section 3 .3 presents Monte Carlo re-
sults for the three tests under two null hypotheses, and Section 3 .4 contains
the power results for the three alternative hypotheses. We summarize and
conclude in Section 3 .5 .

3.2 The Variance Ratio Test

Since the asymptotic sampling theory for the variance ratio statistic is fully
developed in Lo and MacKinlay (1988b), we present only a brief summary
here. Let X~ denote a stochastic process satisfying the following recursive
relation :

Χι = μ + Χz-ι + ε~, Ε [ε ξ ] = 0, for α11 t,

	

(3.2.1α)

or
~Xt = ~ + ~~, ~X~ - X~ - Xi_ i ,

	

(3.2.1b)

where the drift ~ is an arbitrary parameter. The essence of the random walk
hypothesis is the restriction that the disturbances ~ t are serially uncorrelated
or that innovations are unforecastable from past innovations. We develop
our test under two null hypotheses which capture this aspect of the random
walk: independently and identically distributed Gaussian increments, and
the more general case of uncorrelated but weakly dependent and possibly
heteroskedastic increments .

3.2.1 The IID Gaussian Null Hypothesis

Let the null hypothesis H~ denote the case where the i t's are IID normal
random variables with variance ~ 2 . Hence

Ηι : ε i llD Ν(~> σ 2 ) .

	

(3.2.2)

In addition to homoskedasticity, we have made the assumption of indepen-
dent Gaussian increments as in Dickey and Fuller (1979, 1981) and Evans

dependence on the drift may be eliminated by the inclusion of a time trend in the regression,
but requires the estimation of an additional parameter and may affect the power of the resulting
test. Section 3.4 reports power comparisons .
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and Savin (1981a, 1981b, 1984) . 7 Suppose we obtain nq + 1 observations
X~, X~ , . . . , Xnq of Xt , where both n and q are arbitrary integers greater than
one . Consider the following estimators for the unknown parameters ~
and ~2 :

1 nq

	

1
l-t = - ~ ~Xk - Xk-1~ _ - ~Xng - XO~,nq k-~

	

nq
nq

~á =_ 1 ~ [Xk - Xk_i - ~] 2 .
nq

k=~

The estimator ~á is simply the sample variance of the first-difference of
X~; it corresponds to the maximum likelihood estimator of the parameter
~ 2 and therefore possesses the usual consistency, asymptotic normality and
efficiency properties .

Consider the variance of qth differences ofXt which, under H~, is q times
the variance of first-differences . By dividing by q, we obtain the estimator
~b (q) which also converges to ~ 2 under Hi, where

1

	

nq

~b(Q) __ nq2 ~ [Xk - `Yk-4 qß]2 .

	

(3.2.5)
4

We have written ~b (q) as a function of q (which we term the aggregation
value) to emphasize the fact that a distinct alternative estimator of ~ 2 may
be formed for each q. $ Under the null hypothesis of a Gaussian random
walk, the two estimators ~á and ~b (q) should be `close' ; therefore a test of
the random walk may be constructed by computing the difference Md(q) _
~~ (q) -~á and checking its proximity to zero . Alternatively, a test may also be
based upon the dimensionless centered variance ratio Mr(q) _ ~b (q)/tea - l,
which converges in probability to zero as well . 9 It is shown in Lo and MacKin-
lay (1988b) that Md(q) and M,(q) possess the following limiting distributions

7 The Gaussian assumption may, of course, be weakened considerably . We present results
for this simple case only for purposes of comparison to other results in the literature that are
derived under identical conditions . In Sectίon 3 .2 .2 we relax both the independent and the
identically distributed assumptions .

B Although we have defined the total number of observations T =_ nq to be divisible by the
aggregation value q, this is only for expositional convenience and may be easily generalized .

9 The use of variance ratios is, of course, not new. Most recently, Campbell and Mankiw
(1987), Cochrane (1987b, 1987c), French and Roll (1986) and Huizinga (1987) have all com-
puted variance ratios in a variety of contexts . However, those studies do not provide any formal
sampling theory for our statistics . Specifically, Cochrane (1988) and French and Roll (1986)
rely upon Monte Carlo simulations to obtain standard errors for their variance ratios under the
null . Campbell and Mankiw (1987) απd Cochrane (1987c) do derive the asymptotic variance
of the variance ratio, but only under the assumption that the aggregation value q grows with
(but more slowly than) the sample size T . Specifically, they use Priesiley's (1981, p . 463) ex-
pression for the asymptotic variance of the estimator of the spectral density of ~ X~ at frequency

(3.2 .3)

(3.2 .4)
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under the null hypothesis Hl :

~Md(q)
^~ N \0,

2(2q
3)(q

1)
~4 / ,

	

(3.2.óa)
/q

ngMr(q) ^~ N CO,
2(2q	-3)(q
	-

1)1
.

	

(3.2.ób)J
q

An additional adjustment that may improve the finite-sample behavior

of the test statistics is to use unbiased estimators ~~ and ~b (q) in computing

Md(q) and M,(q), where

with

m - q(nq - q + 1) C1 - 4 ~ .
nq

We denote the resulting adjusted specification test statistics Md(q) and

~, (q) . Of course, although the variance estimators σá and σb (q) are unbi-

ased, only M,~(q) is unbiased; MT (q) is not .

zero with a Bartlett window as the appropriate asymptotic variance of the variance ratio . But
Priestley's result requires (among other things) that q ~ oo, T ~ ~o, and q/ T -i 0. In this
chapter, we develop the formal sampling theory of the variance ratio statistics for the more
general case.

Our variance ratio may, however, be related to the spectral density estimates in the following
way. Letting f (0) denote the spectral density of the increments ~X~ at frequency zero, we have
the following relation :

ßf(0) _ ~(0)+2 •~ y(k),
k=1

where y (k) is the autocovariance function. Dividing both sides by the variance y (0) then yields

n q
_

	

1
σα =

	

Σ (Xk - Xk-1 - μ)2 ,
(nq - 1) k=~
1 η4

Οό(q) =
1ηΣ (Χ/y - Xk q - q%λ,) 2 ,

k=q

πf*(0) = 1+2 •Σ ρ(k) >
k=1

(3 .2 .7a)

(3.2.7b)

where f* is the normalized spectral density and ~(k) is the autocorrelation function . Now in
order to estimate the quantity ~f * (0), the infinite sum on the right-hand side of the preceding
equation must obviously be truncated . I~ in addition to truncation, the autocorrelations are
weighted using Newel and West's (1987) procedure, then the resulting estimator is formally

equivalent to our M,(q) statistic . Although he does not explicitly use this variance ratio,
Huizinga (1987) does employ the Newey and West (1987) estimator of the normalized spectral
density.
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3.2.2 The Heteroskedastic Null Hypothesis

Since there is already a growing consensus that many economic time series
possess tίme-varγing volatilities, we derive a version of our specification test
of the random walk model that is robust to heteroskedasticity. As long as the
increments are uncorrelated, the variance ratio must still converge to one
in probability even with heteroskedastic disturbances . Heuristically, this is
simply because the variance of the sum of uncorrelated increments must
still equal the sum of the variances . Of course, the asymptotic variance of
the variance ratios will depend on the type and degree of heteroskedastic-
ity present. By controlling the degree of heterogeneity and dependence
of the process, it is possible to obtain consistent estimators of this asymp-
totic variance . To relax the IID Gaussian restriction of the i t's, we follow
White's (1980) and White and Domowitz's (1984) use of mixing and mo-
ment conditions to derive heteroskedasticity-consistent estimators of our
variance ratio's asymptotic variance . We require the following assumptions
on {~ t }, which form our second null hypothesis :

H2 :

(Al ) For all t, E [~ t ] = 0, E [~ t ~ t _~ ] = 0 for any ~ ~ 0 .

(A2) {~ t } is i/~-mixing with coefficients ~/~(m) of size r/(2r - 1) or is ~-
mixing with coefficients ~(m) of size r/(r - 1), r > 1, such that for
all t and for any ~ > 0, there exists some ~ > 0 for which

r
(Α3) lim 1Σ Ε [εΙ ] = σ~ < οο .Τ~~ Τ ι=1

Ε~ε t ~t ~ ~2ιr+α> < Δ < οο .

	

(3.2.8)

(A4) For all t, E[~ t ~ t _~ ~ t ~ t_ k ] = 0 for any nonzero j, k where j ~ k.

Assumption (Al) is the essential property of the random walk that we wish
to test Assumptions (A2) and (A3) are restrictions on the degree of depen-
dence and heterogeneity which are allowed and yet still permit some form
of law of large numbers and central limit theorem to obtain . This allows for
a variety of forms of heteroskedasticity including deterministic changes in
the variance (due, for example, to seasonal components) as well as Engle's
(1982) ARCH processes (in which the conditional variance depends upon
past information) . 10 Assumption (A4) implies that the sample autocorrela-

~ o In addition to admitting heteroskedasticity, it should be emphasized that assumptions
(A2) and (A3) also follow for more general heterogeneity and weak dependence . Our reason
for focusing on heteroskedasticity is merely its intuitiveness : it is more difficult to produce
an interesting example o~ for example, an uncorrelated homoskedastic time series which is
weakly dependent and heterogeneously distributed .
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tions of ~ t are asymptotically uncorrelated . ii Under the null hypothesis H2,

we may obtain heteroskedasticity-consistent estimators δ(j) of the asymptotic

variance ~ (j) of the autocorrelations ~ (j) of ~Xt . Using the fact that the

variance ratio may be written as an approximate linear combination of au-

tocorrelations (see (3 .2.12) below) yields the following limiting distribution

for M,(q)a 2

where

ΜΤ(q) ^' ΝίΟ, υ(q)l ,

	

(3.2.9α)

V(q) = Σ [2(qq

	1 ~ . δ(j), ν(q) = Σ
[2(q

- j)~2
. δ(j), (3.2.9~)

ι

	

q

nqΣk9 j+1(Χk - Χk_ι - /.t) 2 (Χk_ j - Χk_j_ι - /.L) 2
δ(j) _

	

	 	(3.2.9ε)
4~Σk-1(Χk - Χk_1 - ~)2~

Tests of Hi and H2 may then be based on the normalized variance ratios

zi(q) and z2(q), respectively, where

	q	
_

	

ι/2

χι(q) _ ~Μr(Q) •
(2(2

	1)(Q 1)1

	

α, Ν(0, 1), (3.2.10α)
3q

,~(q) _- ~ Μ,(q) . ν-ι/2( q ) ~. •η/(0, 1),

	

(3 .2 .1Ο~)

~~~lthough this assumption may be weakened considerably, it would be at the expense of
computational simplicity since in that case the asymptotic covariances of the autocorrelations
must be estimated . Specifically, since the variance ratio statistic is asymptotically equivalent
to a linear combination of autocorrelations , its asymptotic variance is simply the asymptotic
vańan~e of the linear combination of autocorrelations . If (A4) obtains, this variance is equal
to the weighted sum of the individual autocorrelation variances . If (A4) is violated, then the
autocovańances of the autocorrelations must also be estimated . This is readily accomplished
using, for example, the approach in Newey and West (1987) . Note that an even more general

(and possibly more exact) sampling theory for the variance ratios may be obtained using the
results of Dufour and Roy (1985) . Again, this would sacrifice much of the simplicity of our
asymptotic results .

12 An equivalent and somewhat more intuitive method of arriving at (32 .9c) is to consider
the regression of the increments ~X~ on a constant and the jth lagged increment ~Xt _ j . The
estimated slope coefficient is then simply the jth autocorrelation coefficient and the estimator
~(j) of its variance is numerically identical to White's (1980) heteroskedasticity{onsistent εο-
variance matrix estimator . Note that White ( 1980) requires independent disturbances ,whereas

White and Domowitz (1984 ) allow for weak dependence (of which uncorrelated errors is, un-
der suitable regularity conditions, a special case ) . Taylor ( 1984) also obtains this result under
the assumption that the multivariate distribution of the sequence of disturbances is symmetric.
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3. The Size and Power of the Variance Ratio Test

3.2.3 Variance Ratios and Autocorrelations

To develop some intuition for the variance ratio, observe that for an aggre-
gation value q of 2, the MT (q) statistic may be re-expressed as

Mr(2) = p(1) - 4
~2

[(X~ - Xo - ~)2 + (X2n - X2n_ i - ~)2] . (3 .2 .11)
a

Hence for q = 2 the M,(q) statistic is approximately the first-order autocor-
relation coefficient estimator p(1) of the differences of X . More generally,
we have the following relation for q > 2 :

M,-(q) =
2(q - ~

P(1) +
2(q

-
2)

P(2)
q

	

q

+ . . . + 2 p(q - 1) + o~(ń i~ 2 ),

	

(3 .2.12)
4

where o~(ń ~~ 2 ) denotes terms which are of order smaller than ń ~~2 in prob-
ability. Equation (3.2.12) provides a simple interpretation for the variance
ratio computed with an aggregation value q : it is (approximately) a linear
combination of the first q - 1 autocorrelation coefficient estimators of the
first differences with arithmetically declining weights . Note the similarity
between this and the Box-Pierce (1970) Q statistic of order q - 1,

q-~
Q~(q - 1) = T~ P 2 (k),

	

(3.2.13)
k=1

which is asymptotically distributed as ~ 2 with q - 1 degrees of freedom .13
Using (3.2.9c) we can also construct a heteroskedasticity-robust Box-Pierce
statistic in the obvious way, which we denote by Qz(q - 1). Since the Box-
Pierce Q-statistics give equal weighting to the autocorrelations and are com-
puted by squaring the autocorrelations, their properties will differ from
those ~f the variance ratio test statistics .

For comparison, we also employ the Dickey-Fuller t-test . This involves
computing the usual t-statistic under the hypothesis,B = 1 in the regression

X~ _ l~ + ~t -~- ßX~-~ + ~~,

	

( 3 .2.14)

and using the exact finite-sample distribution tabulated by Fuller (1976) ,
Dickey and Fuller (1979, 1981) , and Nankervis and Savin (1985) , ~ 4, ~s

~ s Since we include the Box-Pierce test only as an illustrative comparison to the variance
ratio test, we have not made any effort to correct for finite-sample biases as in Ljung and Box
(1978) .

14 Due to the dependence of the t-statistic's distribution on the drift ~, a time trend t must
be included in the regression to yield a sampling theory for the t-statistic which is independent
of the nuisance parameter .

15Yet another recent test of the random walk hypothesis is the regression test proposed by
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3.3 Properties of the Test Statistic under the Null Hypotheses

To gauge the quality of the asymptotic approximations in Section 3.2, we
perform simulation experiments for the M,(q) statistic under both the Gaus-
sian IID null hypothesis and a simple heteroskedastic null . More extensive
simulation experiments indicate that tests based upon the unadjusted statis-
tic M,(q) generally yield less reliable inferences, hence, in the interest of
brevity, we only report the results for M,(q) . For comparison, we also re-
port the results of Monte Carlo experiments performed for the Box-Pierce
Q-statistics and the Dickey-Fuller t-statistic . All simulations are based on
20,000 replications . 1 ó

3.3.1 The Gaussian IID Null Hypothesis

Tables 3 .1a and 3 .1b report the results of simulation experiments conducted
under the independent and identically distributed Gaussian random walk
null H~ . The results show that the empirical sizes of two-sided 5 percent
variance ratio tests based on either the zi(q)- or z2(q)-statistics are close to
their nominal values for sample sizes greater than 32 . Not surprisingly, for
an aggregation value q of 2 the behavior of the variance ratio is comparable
to that of the Box-Pierce Q-statistic since MT(2) is approximately equal to
the first-order serial correlation coefficient . However, for larger aggregation
values the behavior of the two statistics differs .

Table 3 .1 a shows that as the aggregation value q increases to one-half the
sample size, the empirical size of the Box-Pierce QI-test generally declines
well below its nominal value, whereas the size of the variance ratio's zi-test
seems to first increase slightly above and then fall back to its nominal value .
For example, with a sample size of 1024, the size of the 5 percent Q~-test
falls monotonically from 5 .1 to 0 .0 percent as q goes from 2 to 512; the size
of the 5 percent zi-test starts at 5 .2 percent when q = 2, increases to 6.2
percent at q = 256, and settles at 5 .1 percent when q = 512 .

Although the size of the variance ratio test is closer to its nominal value
for larger q, this does not necessarily imply that large values of q are generally
more desirable. To examine this issue, Table 3 .1a separates the size of the
variance ratio test into rejection rates of the lower and upper tails of the 1, 5,
and 10 percent tests. When q becomes large relative to the sample size, the

Fama and French (1988) . Since Monte Carlo experiments by Poterba and Summers (1988)
indicate that the variance ratio is more powerful than this regression test against several inter-
esting alternatives, we do not explore its finite-sample properties here .

~ sNull simulations were performed in single-precision FORTRAN on a DEC VAX 8700 using
the random number generator GGNML of the IMSL subroutine library . Power simulations
were performed on an IBM 3081 and a VAX 8700 also in single-precision FORTRAN using
GGNML.



Table 3.1a . Emρirical sizes of nominal 1, 5, and lO~ercent two-sided var~an~e ratio tests of the random walk null hypothesis with homoskedastic
disturbances. The statistic zl (q) is asymptotically N(0, 1) under the IID random walk. The rejection rates for each of the 1, 5, and 10 percent tests
are broken down into u~~er and lower tail rejections to display the ske~ness of the z ι -statistic's emρirίcal distribution. For comρarison, the emρirical
sizes of the one-sided Box-Pierce Q-test (Ql ) using q - 1 autoc~rrelations are also reported . Each set of rows with a gwen sample size forms a separate
and independent simulation ex~er~ment based on 20, 000 replications .
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Table 3.1b. Empirical sizes of nominal 1, 5, and 10 percent two-sided variance ratio tests of the random walk null hypothesis with homoskedastic
disturbances. The statistic ~z ( q) is asymptotically N(0, 1) under the more general conditions of heteroskedastic and weakly dependent (but un~orrelated)
random walk increments . The rejection rates for each of the 1, 5, and 10 percent tests are broken down into upper and lower tail rejections to display
the skewness of the z2-statistic's empirical distribution . For comparison, the empirical sizes of the heteroskedasticity-robust one-sided Box Pierce Q-test
(Q2 ) using q - 1 autocorrelations are also reported . Each set of rows with a given sample size forms a separate and independent simulation experiment
based on 20, 000 replications .
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0.098
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Table 3 .1 b. (continued)
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0.012

	

0.014

	

0.039

	

0.053

	

0.050

	

0.038

	

0.065

	

0.104

	

0.101

	

4

256

	

16

	

0.000

	

0.018

	

0.018

	

0.015

	

0.007

	

0.047

	

0.054

	

0.059

	

0.030

	

0.074

	

0.104

	

0.110

	

~
256

	

32

	

0.000

	

0.027

	

0.027

	

0.019

	

0.001

	

0.057

	

0.058

	

0.068

	

0.016

	

0.083

	

0.099

	

0.119

	

p

256

	

64

	

0.000

	

0.040

	

0.040

	

0.029

	

0.000

	

0.070

	

0.070

	

0.083

	

0.000

	

0.093

	

0.093

	

0.137

	

~.
256

	

128

	

0.000

	

0.035

	

0.035

	

0.047

	

0.000

	

0.060

	

0.060

	

0.108

	

0.000

	

0.081

	

0.081

	

0.161

	

~

512

	

2

	

0.005

	

0.005

	

0.010

	

0.010

	

0.025

	

0.026

	

0.051

	

0.050

	

0.050

	

0.052

	

0.101

	

0.100
512

	

4

	

0.003

	

0.008

	

0.011

	

0.009

	

0.022

	

0.031

	

0.052

	

0.047

	

0.047

	

0.056

	

0.103

	

0.095
512

	

8

	

0.001

	

0.010

	

0.012

	

0.011

	

0.018

	

0.035

	

0.053

	

0.047

	

0.043

	

0.061

	

0.104

	

0.095

	

~
512

	

16

	

0.001

	

0.013

	

0.014

	

0.011

	

0.013

	

0.039

	

0.052

	

0.050

	

0.037

	

0.065

	

0.101

	

0.100
512

	

32

	

0.000

	

0.020

	

0.020

	

0.014

	

0.006

	

0.048

	

0.054

	

0.056

	

0.029

	

0.073

	

0.103

	

0.107
512

	

64

	

0.000

	

0.030

	

0.030

	

0.018

	

0.001

	

0.059

	

0.059

	

0.066

	

0.014

	

0.083

	

0.097

	

0.118
512

	

128

	

0.000

	

0.039

	

0.039

	

0.030

	

0.000

	

0.068

	

0.068

	

0.085

	

0.000

	

0.090

	

0.090

	

0.138
512

	

256

	

0.000

	

0.034

	

0.034

	

0.048

	

0.000

	

0.060

	

0.060

	

0.110

	

0.000

	

0.080

	

0.080

	

0.164

1024

	

2

	

0.004

	

0.006

	

0.010

	

0.010

	

0.024

	

0.028

	

0.052

	

0.051

	

0.049

	

0.052

	

0.101

	

0.100
1024

	

4

	

0.003

	

0.007

	

0.010

	

0.010

	

0.020

	

0.030

	

0.050

	

0.050

	

0.046

	

0.056

	

0.102

	

0.097
1024

	

8

	

0.002

	

0.010

	

0.012

	

0.010

	

0.017

	

0.032

	

0.050

	

0.049

	

0.041

	

0.058

	

0.099

	

0.098
~Ι

	

1024

	

16

	

0.001

	

0.011

	

0.012

	

0.010

	

0.015

	

0.036

	

0.051

	

0.050

	

0.038

	

0.063

	

0.101

	

0.098
1024

	

32

	

0.001

	

0.016

	

0.016

	

0.012

	

0.010

	

0.041

	

0.052

	

0.052

	

0.034

	

0.067

	

0.101

	

0.103
1024

	

64

	

0.000

	

0.020

	

0.020

	

0.016

	

0.005

	

0.046

	

0.051

	

0.062

	

0.027

	

0.071

	

0.099

	

0.114
1024

	

128

	

0.000

	

0.026

	

0.026

	

0.021

	

0.001

	

0.056

	

0.057

	

0.071

	

0.014

	

0.081

	

0.094

	

0.123
1024

	

256

	

0.000

	

0.036

	

0.036

	

0.032

	

0.000

	

0.066

	

0.066

	

0.091

	

0.000

	

0.087

	

0.087

	

0.146

	

~
1024

	

512

	

0.000

	

0.033

	

0.033

	

0.047

	

0.000

	

0.058

	

0.058

	

0.113

	

0.000

	

0.076

	

0.076

	

0.170
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3 . The Size and Poorer of the hariance Ratio Test

rejections of the variance ratio test are almost wholly due to the upper tail .
One reason for this positive skewness of the zi (q)-statistic is that the variance
ratio is bounded below by zero, hence a related lower bound obtains for
the test statistic . i ~ Although this is of less consequence for the size of the
variance ratio test, it has serio~~s power implications and will be discussed
more fully in Section 3 .4 .1 .

Table 3.1b reports similar results for the heteroskedasticity-robust test
statistics z2(q) and Q2 . For sample sizes greater than 32, the size of the
variance ratio test is close to its nominal value when q is small relative to the
sample size. As q increases for a given sample, the size increases and then
declines, as in Table 3 .1a. Again, the variance ratio rejections are primarily
due to its upper tail as q increases relative to the sample size . In contrast
to the Qi-test, the heteroskedasticity-robust Box-Pierce test Q2 increases in
size as more autocorrelations are used . For example, in samples of 1024
observations the size of the 5 percent Q2-test increases from 5.1 to 11 .3
percent as q ranges from 2 to 512 . In contrast, the size of the variance ratio
test starts at 5 .2 percent when q = 2, increases to 6 .6 percent at q = 256,
and falls to 5.8 percent at q = 512 .

Tables 3.1a and 3 .1b indicate that the empirical size of the variance ratio
tests is reasonable even for moderate sample sizes, and is closer to its nominal
value than the Box-Pierce tests when the aggregation value becomes large
relative to the sample size. However, in such cases most of the variance
ratio's rejections are from its upper tail ; power considerations will need to
be weighed against the variance ratio test's reliability under the null .

Since the sampling theory for the Q- and z-statistics obtain only asymp-
totically, the actual size of any test based on these statistics will of course differ
from their nominal values in finite samples . Although Tables 3 .1a and 3 .1b
indicate that such differences may not be large for reasonable aggregation
values, it may nevertheless seem more desirable to base tests upon the re-
gression t-statistic for which Fuller (1976) , Dickey and Fuller (1979, 1981) ,
and Nankervis and Savin (1985) have tabulated the exact finite-sample dis-
tribution. Due to the dependence of the t-statistic's distribution on the
drift ~, an additional nuisance parameter (a time-trend coefficient) must
be estimated to yield a sampling distribution that is independent of the drift .
Although it has been demonstrated that the t-statistic from such a regression
converges in distribution to that of Dickey and Fuller, there may be some
discrepancies in finite samples . Table 3 .2 presents the empirical quantiles
of the distribution of the t-statistic associated with the hypothesis ß = 1 in
the regression (3.2 .14) . A comparison of these quantiles with those given
in Fuller (1976, Table 8 .5 .2) suggests that there mad be some significant

17More direct evidence of this skewness is presented in Table 3 .4, in which the fractiles of
the vańance ratio test statistic are reported . See also the discussion in Section 3 .4 .1 .
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Table 3.2. Empirical quartiles of the (Dickey Fuller) t-statistic associ-
atedwiththehypothesisß = 1 intheregressionX i = ~+mot+,BX~_~+
~~, where ~~ is IID ~~(0, 1) . Each row corresponds to a separate and
independent simulation experiment based upon 20, 000 replications .

Sample

	

0.005

	

0.010

	

0.025

	

0.050

	

0.100
Size

32 -4.767 -4.456 -4.043 -3.731 -3.361
64 -4.449 -4.188 -3.860 -3.570 -3.243
128 -4.324 -4.087 -3.777 -3.492 -3.186
256 -4.235 -3.990 -3.684 -3.424 -3.135
512 -4.173 -3.973 -3.676 -3.424 -3.131

1024

	

-4.160 -3.959 -3.663 -3.425 -3.130

Sample

	

0.900

	

0.950

	

0.975

	

0.990

	

0.995
Size

32 -1 .222 -0.887 -0.598 -0.246 -0.013
64 -1 .230 -0.906 -0.620 -0.279 -0.019

128 -1.241 -0.918 -0.635 -0.273 -0.040
256 -1.241 -0.910 -0.649 -0.276 -0.049
512 ~ -1.233 -0.903 -0.611 -0.299 -0.032
1024

	

-1.252 -0.951 -0.673 -0.319 -0.054

differences for small samples, but for sample sizes of 500 or greater the
quantiles in Table 3 .2 are almost identical to those of Dickey and Fuller.

3.3.2 A Heteroskedastic Null Hypothesis

To assess the reliability of the heteroskedasticity-robust statistic z2(q), we
perform simulation experiments under the null hypothesis that the distur-
bance ~~ in (3.1) is serially uncorrelated but heteroskedastic in the following
manner. Let the random walk disturbance ~~ satisfy the relation ~~ - ~i~~,

where ~~ is IID N(0, 1) and ~t satisfies

1ησ2 = ι/ι • 1ησ2 1 + ζτ> ζτ ^! Ν(0, 1) .

	

(3.3 .1)

~~ and ~~ are assumed to be independent . The empirical studies of French,
Schwert, and Stambaugh (1987) and Poterba and Summers (1986) posit
such a process for the variance . Note that ~i cannot be interpreted as the
unconditional variance of the random walk disturbance ~ t since ~2 is itself
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stochastic and does not correspond to the unconditional expectation of
any random variable . Rather, conditional ufion ~2, ~ t is normally distributed
with expectation 0 and variance ~~ . I~ in place of (3.3 .1), the variance ~~

were reparameterized to depend only upon exogenous variables in the time
t-1 information set, this would correspond exactly to Engle's (1982) ARCH
process .

The unconditional moments of ~ t may be readily deduced by expressing
the process explicitly as a function of all the disturbances :

ε
~ t = λ~σο ~ • ΠeΧρ[2~` -kζα] •

	

(3.3.2)
α=ι

Since ~° i λ~ and ζk are assumed to be mutually independent, it is apparent
that ~~ is serially uncorrelated at all leads and lags (hence assumption (Al)
is satisfied) but is nonstationary and temporally dependent . Moreover, it is
evident that E[~i ~~_~ ~ t_ k ] = 0 for all t and for j ~ k. Hence assumption
(A4) is also satisfied. A straightforward calculation yields the moments
of ~~ :

Ε[ε2 ρ ]

	

Ε
Lσ°ρ~ ~ fi 2ρΙ

exp
[2 1 - ~2cJ'

	

(3.3.3α)

Ε[ε~Ρ+i ] = 0,

	

ρ = 0, 1, 2, . . . .

	

(3.3.3b)

From these expressions it is apparent that, for ~/~ E (0, 1), ~~ possesses
bounded moments of any order and is unconditionally heteroskedastic ;
similar calculations for the cross-moments verify assumption (A2) . Finally,
the following inequality is easily deduced :

η
1 ΣΕ[ε2] < exp	

5
2

	

< οο.

	

(3.3.4)
η ~t

	

2(1 -,/~ )

Thus assumption (A3) is verified. Note that the kurtosis of ~ t is

4,μ
E[~4]

	

E ~°(	
2
	)2 = 3

. \E L~ 2 J12 > 3,

	

(3.3.5)
E [~~ ]

	

~0

by Jensen's inequality. This implies that, as for Engle's (1982) stationary
ARCH process, the distribution of ~ t is more peaked and possesses fatter
tails than that of a normal random variate . However, when ~/r = 0 or as
t increases without bound, the kurtosis of ~ t is equal to that of a Gaussian
process .



Table 3.3a . Empirical sizes of nominal 1, 5, and 10 percent two-sided variance ratio tests of the random walk null hypothesis with heteroskedastic
disturbances . The statistic z~ (q) is asymptotically N(0, 1) under the IIII random walk ; the z2 (q)-statistic is asymptotically .~~(0, 1) under the more
general conditions of heter~skedasti~ end weakly dependent (but uncorrelated) increments . For comparison, the empirical sizes of the t~o-sided Dickey-
Fuller t-test (DF), the one-sided BoxPierce Q-test ( Q~ ) and its heteroskedasticity-consistent counterpart ( ~ ) (both using q - 1 aut~correlations) are
also reported. The specific form of heteroskedasticity is given by In ~~ _ ~/~ In ~~ 1 ~- ~~, ~~ IID N(0, 1) and >/~ = 0.50. Each set of rows with a gwen
sample size forms a separate and independent simulation experiment based on 20, 000 replications .

ω
ώ

ό

m
1 Percent Test

	

5 Percent Test

	

10 Percent Test

	

y

zι(q)

	

Qι

	

~z(q)

	

~

	

χι(q)

	

Qz

	

zrz(q)

	

~

	

χι(q)

	

Qz

	

χ2(q)

	

Qz

	

~
Q

32

	

2

	

0.024

	

0.014

	

0.015

	

0.003

	

0.093

	

0.069

	

0.071

	

0.036

	

0.161

	

0.133

	

0.141

	

0.098

	

~•
32

	

4

	

0.028

	

0.010

	

0.030

	

0.005

	

0.071

	

0.047

	

0.076

	

0.035

	

0.132

	

0.094

	

0.133

	

0.080
32

	

8

	

0.032

	

0.008

	

0.039

	

0.009

	

0.064

	

0.028

	

0.075

	

0.042

	

0.088

	

0.054

	

0.112

	

0.087

	

~
32

	

16

	

0.023

	

0.003

	

0.036

	

0.017

	

0.047

	

0.011

	

0.065

	

0.054

	

0.070

	

0.020

	

0.089

	

0.100

	

~

32

	

D-F

	

0.023

	

0.073

	

0.124

64

	

2

	

0.037

	

0.029

	

0.008

	

0.004

	

0.107

	

0.094

	

0.055

	

0.039

	

0.175

	

0.158

	

0.118

	

0.098
64

	

4

	

0.029

	

0.023

	

0.016

	

0.006

	

0.088

	

0.078

	

0.061

	

0.037

	

0.155

	

0.134

	

0.116

	

0.087

	

$
64

	

8

	

0.030

	

0.016

	

0.028

	

0.009

	

0.066

	

0.053

	

0.063

	

0.045

	

0.119

	

0.099

	

0.108

	

0.092

	

b,
64

	

16

	

0.035

	

0.012

	

0.038

	

0.016

	

0.065

	

0.036

	

0.068

	

0.056

	

0.090

	

0.061

	

0.097

	

0.101

	

~„
64

	

32

	

0.026

	

0.003

	

0.034

	

0.025

	

0.049

	

0.012

	

0.061

	

0.071

	

0.071

	

0.020

	

0.082

	

0.118

64

	

D-F

	

0.019

	

0.066

	

0.116

128

	

2

	

0.043

	

0.039

	

0.007

	

0.005

	

0.123

	

0.115

	

0.051

	

0.043

	

0.195

	

0.184

	

0.109

	

0.098
128

	

4

	

0.033

	

0.032

	

0.013

	

0.007

	

0.104

	

0.103

	

0.053

	

0.039

	

0.174

	

0.169

	

0.106

	

0.087
128

	

8

	

0.028

	

0.025

	

0.018

	

0.008

	

0.077

	

0.080

	

0.053

	

0.045

	

0.138

	

0.134

	

0.102

	

0.090
128

	

16

	

0.030

	

0.020

	

0.027

	

0.013

	

0.063

	

0.055

	

0.059

	

0.052

	

0.106

	

0.095

	

0.097

	

0.096
128

	

32

	

0.036

	

0.012

	

0.038

	

0.021

	

0.065

	

0.033

	

0.067

	

0.064

	

0.086

	

0.056

	

0.091

	

0.112
128

	

64

	

0.026

	

0.003

	

0.032

	

0.030

	

0.050

	

0.008

	

0.059

	

0.082

	

0.070

	

0.014

	

0.081

	

0.132

	

~

Sample
Size

4

(continued)



Table 3.3a . (continued)

Sample

	

1 Percent Test

	

5 Percent Test

	

10Percent Test
Size

	

4

	

zi(4)

	

Q~

	

~z(q)

	

Q2

	

z~(q)

	

Q

	

~z(q)

	

Q2

	

z~(q)

	

Q~

	

z2(4)

	

Q2

128

	

D-F

	

0.016

	

0.061

	

0.111

256

	

2

	

0.053

	

0.050

	

0.008

	

0.007

	

0.134

	

0.129

	

0.047

	

0.045

	

0.207

	

0.200

	

0.102

	

0.096
256

	

4

	

0.041

	

0.043

	

0.010

	

0.007

	

0.112

	

0.122

	

0.049

	

0.042

	

0.183

	

0.192

	

0.101

	

0.089
256

	

8

	

0.029

	

0.033

	

0.014

	

0.009

	

0.087

	

0.096

	

0.050

	

0.044

	

0.152

	

0.161

	

0.099

	

0.093
256

	

16

	

0.025

	

0.023

	

0.020

	

0.010

	

0.067

	

0.073

	

0.052

	

0.050

	

0.122

	

0.127

	

0.098

	

0.097
256

	

32

	

0.029

	

0.018

	

0.027

	

0.016

	

0.057

	

0.053

	

0.055

	

0.057

	

0.096

	

0.091

	

0.092

	

0.106

	

ω256

	

64

	

0.035

	

0.010

	

0.037

	

0.023

	

0.063

	

0.027

	

0.065

	

0.073

	

0.083

	

0.049

	

0.087

	

0.126
256

	

128

	

0.027

	

0.001

	

0.032

	

0.035

	

0.050

	

0.003

	

0.058

	

0.091

	

0.070

	

0.005

	

0.079

	

0.145
256

	

D-F

	

0.012

	

0.058

	

0.111

	

ν,

512

	

2

	

0.058

	

0.056

	

0.008

	

0.007

	

0.147

	

0.146

	

0.049

	

0.047

	

0.223

	

0.220

	

0.105

	

0.102

	

ρ
512

	

4

	

0.046

	

0.051

	

0.011

	

0.008

	

0.125

	

0.138

	

0.053

	

0.045

	

0.201

	

0.218

	

0.104

	

0.094

	

ά.
512

	

8

	

0.033

	

0.038

	

0.013

	

0.009

	

0.101

	

0.113

	

0.052

	

0.047

	

0.169

	

0.183

	

0.105

	

0.097

	

ό
512

	

16

	

0.026

	

0.029

	

0.016

	

0.010

	

0.076

	

0.086

	

0.054

	

0.050

	

0.136

	

0.146

	

0.103

	

0.098

	

~
512

	

32

	

0.024

	

0.020

	

0.020

	

0.012

	

0.064

	

0.065

	

0.056

	

0.054

	

0.115

	

0.116

	

0.101

	

0.104
512

	

64

	

0.027

	

0.013

	

0.026

	

0.016

	

0.058

	

0.044

	

0.057

	

0.060

	

0.097

	

0.077

	

0.096

	

0.111

	

ά.
512

	

128

	

0.035

	

0.005

	

0.037

	

0.024

	

0.062

	

0.017

	

0.065

	

0.075

	

0.085

	

0.030

	

0.089

	

0.128

	

~
512

	

256

	

0.027

	

0.000

	

0.032

	

0.036

	

0.052

	

0.001

	

0.059

	

0.095

	

0.071

	

0.002

	

0.079

	

0.149

	

~.
512

	

D-F

	

0.010

	

0.049

	

0.099
~ο

1024

	

2

	

0.059

	

0.058

	

0.008

	

0.008

	

0.148

	

0.148

	

0.046

	

0.046

	

0.222

	

0.222

	

0.097

	

0.096
1024

	

4

	

0.047

	

0.057

	

0.009

	

0.009

	

0.128

	

0.148

	

0.050

	

0.049

	

0.197

	

0.226

	

0.100

	

0.100

	

ό•
(continued)
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Table 3.3a. (continued)

	

w

~~

Sample

	

1 Percent Test

	

5 Percent Test

	

10 Percent Test

Size

	

q

	

z~(q)

	

Q~

	

~z(q)

	

~

	

z~(q)

	

Q~

	

~z(q)

	

Q2

	

z~(q)

	

Q~

	

~(4)

	

Q2

1024

	

8

	

0.031

	

0.039

	

0.010

	

0.008

	

0.101

	

0.116

	

0.050

	

0.046

	

0.167

	

0.193

	

0.100

	

0.095
1024

	

16

	

0.021

	

0.029

	

0.011

	

0.010

	

0.079

	

0.095

	

0.050

	

0.051

	

0.139

	

0.160

	

0.101

	

0.100

	

~
1024

	

32

	

0.020

	

0.022

	

0.015

	

0.012

	

0.063

	

0.073

	

0.051

	

0.053

	

0.119

	

0.130

	

0.100

	

0.102

	

4
1024

	

64

	

0.023

	

0.016

	

0.021

	

0.014

	

0.057

	

0.058

	

0.054

	

0.057

	

0.106

	

0.100

	

0.099

	

0.107

	

~
1024

	

128

	

0.030

	

0.009

	

0.030

	

0.019

	

0.061

	

0.033

	

0.061

	

0.068

	

0.096

	

0.061

	

0.097

	

0.119

	

á
1024

	

256

	

0.037

	

0.002

	

0.039

	

0.027

	

0.064

	

0.008

	

0.068

	

0.083

	

0.088

	

0.015

	

0.093

	

0.137

	

~,
1024

	

512

	

0.028

	

0.000

	

0.034

	

0.041

	

0.052

	

0.000

	

0.059

	

0.104

	

0.070

	

0.000

	

0.080

	

0.161

	

~

1024

	

D-F

	

0.012

	

0.054

	

0.105

Table 33b . Empirical sizes of nominal 1, 5, and 10 percent two-sided variance ratio tests of the random walk null hypothesis with heter~skedastic

	

~
disturbances. The statistic zi (q) is asymptotically N(0, 1) under the IID random walk ; the z~(q)-statistic is asymptotically .~~(0, 1) under the more
general conditions of heteroskedastic and weakly dependent (but uncorrelated) increments . For comparison, the empirical sizes of the two-sided Dickey-

	

~x
Fuller t-test (D F), the one-sided Box Pierce Q-test (Qi ) and its heteroskedasticity-consistent counterpart (Q 2 ) (both using q - 1 autocorrelations) are

	

ó
also reported . The specific form of heteroskedasti~ity is given by In ~~ _ ~/~ In ~~ ~ + ~~, ~~ IID~~(0, 1) and ~fi = 0.95 . Each set of rows with a given

sample size forms a separate and independent simulation experiment based on 20, 000 replications .
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Sample

	

1 Percent Test

	

5 Percent Test

	

10 Percent Test

Size

	

q

	

z~(q)

	

Qι

	

~z(q)

	

~

	

z~(q)

	

Q~

	

~z(q)

	

~

	

z~(q)

	

Q~

	

~z(q)

	

Q2

32

	

2

	

0.087

	

0.054

	

0.024

	

0.002

	

0.196

	

0.151

	

0.080

	

0.028

	

0.279

	

0.231

	

0.157

	

0.084
32

	

4

	

0.052

	

0.054

	

0.033

	

0.005

	

0.140

	

0.142

	

0.080

	

0.031

	

0.229

	

0.225

	

0.130

	

0.068
32

	

8

	

0.046

	

0.031

	

0.037

	

0.008

	

0.077

	

0.083

	

0.070

	

0.037

	

0.104

	

0.134

	

0.097

	

0.076
32

	

16

	

0.028

	

0.006

	

0.032

	

0.012

	

0.055

	

0.019

	

0.060

	

0.040

	

0.078

	

0.032

	

0.084

	

0.074

32

	

D-F

	

0.088

	

0.159

	

0.216
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Table 3.3b. (continued)

1 Percent Test

	

5 Perceπt Test

	

10 Percent Test

zι(q)

	

Qz

	

~z(q)

	

Qz

	

zι(4)

	

Qι

	

~τ(q)

	

92

	

zι(q)

	

4α

	

~z(q)

	

~

(continued)
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64

	

2

	

0.166

	

0.142

	

0.014

	

0.002

	

0.288

	

0.261

	

0.059

	

0.031

	

0.377

	

0.347

	

0.126

	

0.088
64

	

4

	

0.127

	

0.193

	

0.022

	

0.005

	

0.258

	

0.341

	

0.068

	

0.032

	

0.353

	

0.439

	

0.117

	

0.076
64

	

8

	

0.072

	

0.173

	

0.032

	

0.008

	

0.158

	

0.312

	

0.066

	

0.039

	

0.262

	

0.406

	

0.099

	

0.081
ι

	

64

	

16

	

0.057

	

0.084

	

0.035

	

0.011

	

0.089

	

0.167

	

0.062

	

0.045

	

0.115

	

0.231

	

0.085

	

0.086
Ι,

	

64

	

32

	

0.037

	

0.013

	

0.032

	

0.016

	

0.066

	

0.029

	

0.059

	

0.044

	

0.089

	

0.044

	

0.081

	

0.077

64

	

D-F

	

0.106

	

0.186

	

0.252

128

	

2

	

0.265

	

0.252

	

0.008

	

0.002

	

0.391

	

0.377

	

0.043

	

0.031

	

0.467

	

0.458

	

0.106

	

0.088

	

ω

128

	

4

	

0.231

	

0.398

	

0.016

	

0.005

	

0.366

	

0.554

	

0.055

	

0.034

	

0.450

	

0.638

	

0.103

	

0.078

	

y~
128

	

8

	

0.150

	

0.447

	

0.026

	

0.009

	

0.302

	

0.596

	

0.057

	

0.040

	

0.400

	

0.677

	

0.087

	

0.084

	

~
128

	

16

	

0.085

	

0.361

	

0.030

	

0.012

	

0.176

	

0.505

	

0.058

	

0.044

	

0.289

	

0.585

	

0.083

	

0.087
~

	

128

	

32

	

0.060

	

0.169

	

0.031

	

0.014

	

0.093

	

0.267

	

0.056

	

0.046

	

0.120

	

0.329

	

0.076

	

0.090

	

~
~

	

128

	

64

	

0.039

	

0.023

	

0.029

	

0.018

	

0.067

	

0.041

	

0.053

	

0.048

	

0.088

	

0.055

	

Π.073

	

0.083

	

α,

128

	

D-F

	

0.124

	

0.206

	

0.273

256

	

2

	

0.367

	

0.359

	

0.005

	

0.003

	

0.493

	

0.487

	

0.036

	

0.031

	

0.564

	

0.557

	

0.095

	

0.087
256

	

4

	

0.343

	

0.592

	

0.013

	

0.006

	

0.472

	

0.717

	

0.048

	

0.033

	

0.544

	

0.778

	

0.091

	

0.076

	

~„
256

	

8

	

0.284

	

0.691

	

0.022

	

0.009

	

0.429

	

0.802

	

0.054

	

0.040

	

0.513

	

0.852

	

0.087

	

0.081

	

`°
256

	

16

	

0.177

	

0.662

	

0.028

	

0.011

	

0.340

	

0.771

	

0.058

	

0.043

	

0.443

	

0.824

	

0.082

	

0.082
256

	

32

	

0.096

	

0.513

	

0.031

	

0.014

	

0.193

	

0.623

	

0.060

	

0.047

	

0.314

	

0.678

	

0.081

	

0.088

	

~
256

	

64

	

0.071

	

0.241

	

0.035

	

0.019

	

0.102

	

0.329

	

0.060

	

0.053

	

0.127

	

0.383

	

0.079

	

0.094

	

ό
256

	

128

	

0.043

	

0.030

	

0.031

	

0.022

	

0.072

	

0.047

	

0.055

	

0.055

	

0.094

	

0.060

	

0.074

	

0.092 rt
256

	

D-F

	

0.134

	

0.223

	

0.289

	

~~
~ό
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Sample

	

1 Percent Test

	

5 Percent Test

	

10 Percent Test

	

,~
Size

	

4

	

z~~q)

	

Q~

	

~z~q)

	

Q2

	

z~~q)

	

Q~

	

~z~q)

	

Q2

	

z~~q)

	

Ql

	

zz(q)

	

Q2

	

~.

512

	

2

	

0.476

	

0.474

	

0.003

	

0.003

	

0.582

	

0.581

	

0.036

	

0.034

	

0.645

	

0.640

	

0.093

	

0.090

	

ò
512

	

4

	

0.453

	

0.740

	

0.011

	

0.005

	

0.565

	

0.830

	

0.045

	

0.035

	

0.631

	

0.873

	

0.090

	

0.082
512

	

8

	

0.401

	

0.858

	

0.021

	

0.008

	

0.528

	

0.921

	

0.051

	

0.038

	

0.600

	

0.945

	

0.083

	

0.083
512

	

16

	

0.317

	

0.868

	

0.024

	

0.011

	

0.461

	

0.925

	

0.054

	

0.045

	

0.541

	

0.946

	

0.080

	

0.089

	

ń.
512

	

32

	

0.188

	

0.786

	

0.029

	

0.011

	

0.356

	

0.858

	

0.056

	

0.045

	

0.456

	

0.890

	

0.079

	

0.090

	

Q
512

	

64

	

0.099

	

0.594

	

0.033

	

0.014

	

0.196

	

0.678

	

0.060

	

0.051

	

0.315

	

0.721

	

0.081

	

0.094

	

~
512

	

128

	

0.073

	

0.301

	

0.037

	

0.019

	

0.104

	

0.374

	

0.063

	

0.058

	

0.129

	

0.414

	

0.081

	

0.100

	

~
512

	

256

	

0.044

	

0.031

	

0.032

	

0.024

	

0.072

	

0.047

	

0.055

	

0.057

	

0.094

	

0.060

	

0.075

	

0.097

	

~

512

	

D-F

	

0.134

	

0.216

	

0.282

	

~

1024

	

2

	

0.576

	

0.575

	

0.003

	

0.003

	

0.667

	

0.666

	

0.035

	

0.033

	

0.719

	

0.718

	

0.091

	

0.089

	

~
1024

	

4

	

0.559

	

0.851

	

0.010

	

0.006

	

0.651

	

0.908

	

0.045

	

0.036

	

0.702

	

0.931

	

0.096

	

0.083
1024

	

8

	

0.513

	

0.944

	

0.019

	

0.009

	

0.620

	

0.971

	

0.049

	

0.040

	

0.680

	

0.982

	

0.086

	

0.084
1024

	

16

	

0.445

	

0.959

	

0.024

	

0.010

	

0.565

	

0.981

	

0.053

	

0.043

	

0.631

	

0.988

	

0.080

	

0.088
1024

	

32

	

0.336

	

0.931

	

0.026

	

0.010

	

0.483

	

0.960

	

0.056

	

0.042

	

0.563

	

0.971

	

0.081

	

0.083

	

~
1024

	

64

	

0.198

	

0.830

	

0.029

	

0.012

	

0.364

	

0.885

	

0.058

	

0.046

	

0.464

	

0.907

	

0.080

	

0.089
1024

	

128

	

0.100

	

0.621

	

0.031

	

0.015

	

0.197

	

0.689

	

0.060

	

0.053

	

0.316

	

0.724

	

0.084

	

0.094

	

`^
1024

	

256

	

0.072

	

0.320

	

0.036

	

0.021

	

0.103

	

0.376

	

0.063

	

0.059

	

0.130

	

0.409

	

0.085

	

0.101
1024

	

512

	

0.043

	

0.033

	

0.031

	

0.024

	

0.070

	

0.045

	

0.055

	

0.060

	

0.090

	

0.052

	

0.075

	

0.101

1024

	

D-F

	

0.127

	

0.214

	

0.281
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3. The Size and Power of the har~ance Ratio Test

Table 3.3a reports simulation results for the z-, Q-, and Dickey-Fuller
t-statistics under the heteroskedastic null hypothesis with parameter ~ _
0.50. It is apparent that both the z~- and Q~-statistics are unreliable in the
presence of heteroskedasticity. Even in samples of 512 observations, the
empirical size of the 5 percent variance ratio test with q = 2 is 14.7 percent;
the corresponding Box-Pierce 5 percent test has an empirical size of 14 .6
percent. In contrast, the Dickey-Fuller t-test's empirical size of 4 .9 percent is
much closer to its nominal value . This is not surprising since Phillips (1987)
and Phillips and Perron (1988) have shown that the Dickey-Fuller t-test is
robust to heteroskedasticity (and weak dependence) whereas the zi- and
Ql-statistics are not. However, once the heteroskedasticity-robust z2- and
~-statistics are used, both tests compare favorably with the Dickey-Fuller
t-test. In fact, for the more severe case of heterscedasticity considered in
Table 3.3b (where /~ = 0 .95), the variance ratio and Box-Pierce tests using
z2 and Q2 are both considerably more reliable than the Dickey-Fuller test .1S
For example, when q/ T is 2 in sample sizes of 512 observations, the sizes of
5 percent tests using z2 and Q2 are 4.7 and 5.7 percent, respectively ; the size
of the 5 percent Dickey-Fuller test is 21 .6 percent.

3.4 Power

Since a frequent application of the random walk has been in modelling
stock market returns, it is natural to examine the power of the variance
ratio test against alternative models of asset price behavior. We consider
three specific alternative hypotheses . The first two are specifications of
the stock price process that have received the most recent attention : the
stationary AR(1) process (as in Shiller, 1981 ; Shiller and Perron, 1985) and
the sum of this process and a random walk (as in Fama and French, 1988;
Poterba and Summers, 1988) . 19 The third alternative is an integrated AR(1)
process which is suggested by the empirical evidence in Lo and MacKinlay
(19ß8b) .

Before presenting the simulation results, we consider an important limi-
tation of the variance ratio test in Section 3.4 .1 . In Section 3 .4.2 we compare
the power of the variance ratio test with that of the Dickey-Fuller and Box-
Pierce tests against the stationary AR(1) alternative . Section 3 .4.3 reports
similar power comparisons for the remaining two alternatives .

18This provides further support for Schwert's (19ß7b) finding that, although the Dickey-
Fuller distribution is still valid asymptotically for a variety of non-IID disturbances, the t-statistic's
rate of convergence may be quite slow.

19The latter specification is, of course, not original to the financial economics literature but
has its roots in Muth (1960) and, more recently, Beveridge and Nelson (1981) .
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3.4.1 The Variance Ratio Test for Large q

Although it will become apparent in Sections 3.4.2 and 3 .4.3 that choos-
ing an appropriate aggregation value q for the variance ratio test depends
intimately on the alternative hypothesis of interest, several authors have sug-
gested using large values of q generally .20 But because the variance ratio test
statistic is bounded below, when q is large relative to T the test may have
little power. To see this, let the (asymptotic) variance of the test statistic
M,(q) be denoted by V, where we have from (3.2.ób)

V -
2(2q - 1)(q - 1) _ 4

	

42	- 2q
	+ 1

	

(3.4.1)
3ng2

	

3n

	

q2

Note that for all natural numbers q, the bracketed function in (3.4 .1) is
bounded between 2 and 1 and is monotonically increasing in q. Therefore,
for fixed n, this implies upper and lower bounds VU =- 4/3n and VL
2/3n for the variance V. Since variances must be nonnegative, the lower
bound for M,(q) is -1 (since we have defined M,(q) to be the variance ratio
minus 1) . Using these two facts, we have the following lower bound on the
(asymptotically) standard normal test statistic zi (q) = M,(q)/~ :

-1

	

_~ _ - ~ 2 ~1~2

	

(3 .4.2)inf[z~(q)] = inf[~V]

Note that n is not the sample size (which is given by nq) , but is the number
of nonoverlapping coarse increments (increments of aggregation value q)
available in the sample and is given by T/q .

If q is large relative to the sample size T, this implies a small value for
n . For example, if q/ T = 2 , then the lower bound on the standard normal
test statistic z~ (q) is -1 .73; the test will never reject draws from the left tail
at the 95 percent level of significance!

Of course, there is no corresponding upper bound on the test statistic
so in principle it may still reject via draws in the right tail of the distribution .
However, for many alternative hypotheses of interest the population values
of their variance ratios are less than unity, 21 implying that for those alter-
natives rejections are more likely to come from large negative rather than
large positive draws of zi (q) . For this reason and because of the unreliability
of large-sample theory under the null when q/ T is large, we have chosen q
to be no more than one-half the total sample size throughout this study .

20For example, Campbell and Mankiw's (1987) asymptotic sampling theory requires that
q goes to infinity as the sample size T goes to infinity (although q must grow at a slower rate
than T) . Also, for a sample size of T Huizinga (1987) sets q to T - 1 .

2~For example, as q increases without bound the variance ratio (population value) of in-
crements any stationary process will converge to 0 . For the sum of a random walk and an
independent stationary process, the variance ratio of its increments will also converge to a
quantity less than unity as q approaches infinity.
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3. The Size and Power of the Variance Ratio Test

3.4.2 Power against a Stationary AR(1) Alternative

As a model of stock market fads, Shiller (1981) has suggested the following
AR(1) specification for the log-price process Xt :

Χι = « + φ ~ ίΧι-ι -
α] + ~t, ~ t ^' .~(0> ~~ ),

	

(3.4.3)

where ~ is positive and less than unity. To determine the power of the
variance ratio test against this alternative, we choose values of the parameters
(~, ~É , may) that yield an interesting range of power across sample sizes and
aggregation values . Since the power does not depend on ~, we set it to
zero without loss of generality. Table 3.5a reports the power of the variance
ratio, Dickey-Fuller t- and Box-Pierce Q-tests at the 1, 5 and 10 percent
levels against the AR(1) alternative with parameters (~, ~2) _ (0 .96, 1) .
The critical values of all three test statistics were empirically determined by
simulation under the IID Gaussian null. In the interest of brevity, we report
the empirical critical values in Table 3 .4 for the variance ratio test only.~ 2

For a fixed number of observations, the power of the variance ratio test
first increases and then declines with the aggregation value q . The increase
can be considerable ; as the case of 1024 observations demonstrates, the
power is 9.2 percent when q = 2 but jumps to 98 .3 percent when q = 256.
The explanation for the increase in power lies in the behavior of the AR(1)
alternative over different sampling intervals : the first-order autocorrelation
coefficient of AR(1) increments grows in absolute value (becomes more
negative) as the increment~nterval increases . This implies that, although
Xj may have a root close to unity (0.96), its first-differences behave less like
random walk increments as the time interval of the increments grows . It
is therefore easier to detect an AR(1) departure from the random walk by
comparing longer first-difference variances to shorter ones, which is pre-
cisely what the variance ratio does for larger q . However, as q is increased
further the power declines . This may be attributed to the imprecision with
which the higher-order autocorrelations are estimated for a fixed sample
size. Since the variance ratio with aggregation value q is approximately a
linear combination of the first q - 1 autocorrelations, a larger value of q/ T
entails estimating higher-order autocorrelations with a fixed sample size .

22 Diebold (1987) tabulates the finite sample distributions of actual variance ratios under
many other null hypotheses of interest. Although we have not compared each of our empirical
quintiles with his, we have spot-checked several for consistency and have found discrepancies
only in the extreme tail areas . For example, with a sample size of 1024 and q = 2, Diebold's
implied value for the upper 0 .5 percent quintile of our test statistic zt is 2 .48 (using his Table
16), whereas our value in Table 3 .4 is 2 .63. There are at least two possible causes for this
discrepancy. First, Diebold's results are based on 10,000 replications whereas ours use 20,000 .
Second, we simulated the bias-corrected statistic whereas Diebold employed the unadjusted
variance ratio . For larger tail areas, this discrepancy vanishes .



Table 3.4. Empirical quantiles of the (asymptotically) N(0, 1) var~an~e ratio test statistic z~(q) under simulated IID Gaussian random walk ~
increments, where q is the aggregation value . Each set of rows with a gwen sample size forms a separate and independent simulation experiment based ó
on 20, 000 replications .
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Τ

	

q

	

0.005

	

0.010

	

0.025

	

0.050

	

0.100

	

0.900

	

0.950

	

0.975

	

0.990

	

0.995

32

	

2

	

-2.56

	

- 2.33

	

-1.99

	

-1.70

	

-1 .35

	

1 .33

	

1 .72

	

2.04

	

2.41

	

2.65
32

	

4

	

-1.96

	

- 1.86

	

-1.67

	

-1 .49

	

-1.25

	

1 .45

	

1 .95

	

2.43

	

3.02

	

3.34
32

	

8

	

-1.52

	

-1.47

	

- 1.38

	

-1.28

	

-1.14

	

1 .50

	

2.22

	

2.87

	

3.72

	

4.28
32

	

16

	

-1.13

	

-1.11

	

- 1.06

	

-1.01

	

-0.92

	

1 .34

	

1 .96

	

2.63

	

3.39

	

3.99

64

	

2

	

-2.56

	

- 2.35

	

-1.97

	

-1 .66

	

-1.29

	

1 .31

	

1 .67

	

1 .99

	

2.38

	

2.61
64

	

4

	

-2.16

	

- 2.01

	

-1.79

	

-1.54

	

-1 .26

	

1 .37

	

1 .83

	

2.22

	

2.72

	

3.10
64

	

8

	

-1.85

	

-1.75

	

-1.59

	

-1.42

	

-1 .21

	

1 .43

	

1 .99

	

2.51

	

3.17

	

3.67
64

	

16

	

-1.47

	

-1.43

	

-1.35

	

-1.26

	

-1.12

	

1 .46

	

2.18

	

2.86

	

3.82

	

4.48
64

	

32

	

-1.10

	

- 1.08

	

-1.04

	

-0.99

	

-0.92

	

1 .29

	

1 .96

	

2.63

	

3.50

	

4.10

128

	

2

	

-2.63

	

-2.36

	

-2.01

	

-1.68

	

-1.29

	

1 .30

	

1 .66

	

1.98

	

2.35

	

2.56
128

	

4

	

-2.30

	

-2.11

	

-1.81

	

- 1.57

	

-1.27

	

1 .33

	

1 .76

	

2 .15

	

2.56

	

2.85
128

	

8

	

-2.05

	

-1.92

	

-1.71

	

- 1.50

	

-1.24

	

1 .39

	

1 .86

	

2.32

	

2.88

	

3.24
128

	

16

	

- 1 .77

	

-1.69

	

-1.54

	

-1.40

	

-1.20

	

1 .46

	

2.04

	

2.59

	

3.28

	

3.86
128

	

32

	

-1.45

	

- 1 .41

	

-1.33

	

-1.23

	

-1.11

	

1 .50

	

2.25

	

2.95

	

3.84

	

4.60
128

	

64

	

-1.10

	

-1.08

	

-1.04

	

-0.99

	

-0.91

	

1 .33

	

2.07

	

2.76

	

3.67

	

4.36

(continued)



Τ

	

q

	

0.005

	

0.010

	

0.025

	

0.050

	

0.100

	

0.900

	

0.950

	

0.975

	

0.990

	

0.995

256

	

2

	

-2.59

	

-2.34

	

-1.97

	

-1.65

	

-1.29

	

1 .30

	

1 .66

	

1 .96

	

2.31

	

2.54

256

	

4

	

-2.33

	

-2.18

	

-1.89

	

-1.60

	

-1.26

	

1 .31

	

1 .70

	

2.08

	

2.49

	

2.81

256

	

8

	

-2.20

	

-2.03

	

-1.77

	

-1.53

	

-1.25

	

1 .34

	

1 .78

	

2.19

	

2.72

	

3.04

256

	

16

	

-2.00

	

-1.87

	

-1.67

	

-1.47

	

-1.22

	

1 .40

	

1 .88

	

2.33

	

2.91

	

3.39

256

	

32

	

-1.77

	

-1.67

	

-1 .53

	

-1.38

	

-1.18

	

1.45

	

2.03

	

2.62

	

3.29

	

3.76

256

	

64

	

-1.45

	

-1 .40

	

-1 .32

	

-1.23

	

-1.10

	

1.51

	

2.24

	

2.99

	

3.91

	

4.57

256

	

128

	

-1.09

	

-1.07

	

-1.03

	

-0.98

	

-0.91

	

1.33

	

2.02

	

2.72

	

3.63

	

4.22

512

	

2

	

-2.57

	

-2.31

	

-1.96

	

-1.65

	

-1.29

	

1.28

	

1 .65

	

1 .98

	

2.33

	

2.58

512

	

4

	

-2.46

	

-2.24

	

-1.90

	

-1.61

	

-1.28

	

1.32

	

1 .70

	

2.05

	

2.46

	

2.76

512

	

8

	

-2.34

	

-2.13

	

-1.83

	

-1.58

	

-1.26

	

1.33

	

1.75

	

2.11

	

2.58

	

2.91

512

	

16

	

-2.17

	

-2.02

	

-1.76

	

-1.52

	

-1.23

	

1.35

	

1.79

	

2.18

	

2.70

	

3.09

512

	

32

	

-1 .97

	

-1.86

	

-1.66

	

-1.47

	

-1.22

	

1 .39

	

1.92

	

2.39

	

2.93

	

3.39

512

	

64

	

-1.74

	

-1.67

	

-1.53

	

-1.38

	

-1.19

	

1 .44

	

2 .06

	

2.68

	

3.41

	

3.83

512

	

128

	

-1.43

	

-1.39

	

-1.31

	

-1.22

	

-1.10

	

1 .48

	

2.22

	

2.95

	

3.91

	

4.64

512

	

256

	

-1.09

	

-1.07

	

-1.03

	

-0.98

	

-0.91

	

1 .30

	

2.00

	

2.70

	

3.58

	

4.27

1024

	

2

	

-2.52

	

-2.28

	

-1.94

	

-1.63

	

-1.27

	

1 .30

	

1 .66

	

2.00

	

2.36

	

2.63

1024

	

4

	

-2.45

	

-2.19

	

-1.88

	

-1.60

	

-1.27

	

1 .33

	

1 .71

	

2.04

	

2.43

	

2.71

1024

	

8

	

-2.35

	

-2.14

	

-1 .81

	

-1.56

	

-1.24

	

1 .33

	

1 .72

	

2.09

	

2.55

	

2.85

1024

	

16

	

-2.22

	

-2.05

	

-1 .80

	

-1.54

	

-1.25

	

1 .35

	

1 .77

	

2.18

	

2.62

	

2.97

1024

	

32

	

-2.10

	

-1.96

	

-1 .73

	

-1.51

	

-1.23

	

1 .36

	

1 .83

	

2.27

	

2.76

	

3.10

1024

	

64

	

-1.94

	

-1.84

	

-1.65

	

-1.46

	

-1.23

	

1.40

	

1 .89

	

2.41

	

2.95

	

3.33

1024

	

128

	

-1.76

	

-1.66

	

-1.53

	

-1.38

	

-1.18

	

1.43

	

2.02

	

2.58

	

3.35

	

3.93

1024

	

256

	

-1.43

	

-1.39

	

-1.31

	

-1.23

	

-1.10

	

1.45

	

2.21

	

2.92

	

3.82

	

4.70

1024

	

512

	

-1 .09

	

-1.07

	

-1.03

	

-0.98

	

-0.91

	

1.27

	

1.97

	

2.68

	

3.56

	

4.36

Table 3.4. (continued)
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The increased sampling variation of these additional autocorrelations leads
to the decline in power. 23

Although the most powerful variance ratio test is more powerful than
the Dickey-Fuller t-test, the difference is generally not large . However, the
variance ratio test clearly dominates the Box-Pierce Q-test . With a sample of
512 observations the power of a 5 percent variance ratio test is 51 .4 percent
(q = 128) whereas the power of the corresponding Q-test is only 7 .1 percent .
However, with an aggregation value of q = 2 the variance ratio has compa-
rable power to the Box-Pierce test. Again, this is as expected since they are
quite similar statistics when q = 2 (the variance ratio is approximately one
plus the first-order autocorrelation coefficient and the Box-Pierce statistic
is the first-order autocorrelation squared) .

We conclude that, against the stationary AR(1) alternative, the variance
ratio test is comparable to the Dickey-Fuller t-test in power and both are
considerably more powerful than the Box-Pierce test .

3.4.3 Two Unit Root Alternatives to the Random Walk

Several recent studies have suggested the following specification for the
log-price process Xz :

X~ = Yt + Zt ,

	

(3.4.4)

where Yr is a stationary process and Z~ is a Gaussian random walk indepen-
dent of ßi . 24 To be specific, let Y~ be an AR(1) ; thus :

Y~ _ ~ + ~ • [Y~_i - ~] + ~~,

	

~i IID N(0, ~~ ),

	

(3.4.5a)

Z~ = Zz-~ +Yi>

	

~t IID N(0, may) .

	

(3.4.5b)

Again, without loss of generality we set ~ to 0 ; p is set to 0.96; ~É is normalized
to unity; and ~Ý takes on the values 0 .50, 1 .00 and 2 .00 so that the conditional
variability of the random walk relative to the stationary component is two,
one, and one-half, respectively. Tables 3.5b-3.5d report the power of the
variance ratio, Dickey-Fuller t and Box-Pierce Q-tests against this alternative .

Z~If the variance ratio test were performed using asymptotic critical values against the AR(1)
alternative, there is another cause of the power to decline as q increases . Under the AR(1)
model, it is apparent that the theoretical values of the variance ratios are all less than unity,
implying that the expectations of the z~-statistics are negative . But it is shown in Section 3 .4.1
that the zt-statistic is bounded below when the asymptotic variance is used to form zi, and that
the lower bound is an increasing function of the ratio of q to the sample size . Therefore, when
the deviation of the alternative from the random walk is in the form of negative draws of zt
(as in the AR(1) case), the variance ratio test cannot reject the null hypothesis when q is large
relative to the number of observations . This is yet another reason we choose q to be less than
or equal to one-half the sample size .

24 See, for example, Summers (1986), Fama and French (1988), and Poterba and Summers
(1988) .
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3. The Size and Power of the Variance Ratio Test

Table 3.5~. Power of the two-sided variance ratio test (using the zi (q) statástic)
against the stationary AR(1) alternative X~ _ ~X~_~ + ~~, ~~ IID .IV(0, 1) and
~ = 0.96 . For comparison, the power of the one-sided Box-Pierce Q-test (Q~ ) and the
two-sided Dickey Fuller t-test (D F) are also reported. Each set of rows with a gwen
sample size forms a separate and independent simulation experiment based on 20, 000
replications .

Sample
Size

4
1 Percent Test

	

5 Percent Test

	

10 Percent Test

zι (q)

	

Qι

	

zι (q)

	

Qι

	

zι(q)

	

Q~

32

	

2

	

0.008

	

0.009

	

0.047

	

0.047

	

0.093

	

0.097
32

	

4

	

0.009

	

0.009

	

0.049

	

0.045

	

0.101

	

0.096
32

	

8

	

0.009

	

0.010

	

0.048

	

0.048

	

0.096

	

0.098
32

	

16

	

0.009

	

0.010

	

0.049

	

0.050

	

0.101

	

0.099

32

	

D-F

	

0.010

	

0.050

	

0.098

64

	

2

	

0.009

	

0.008

	

0.048

	

0.048

	

0.097

	

0.100
64

	

4

	

0.009

	

0.009

	

0.046

	

0.050

	

0.093

	

0.099
64

	

8

	

0.008

	

0.010

	

0.044

	

0.051

	

0.093

	

0.107
64

	

16

	

0.008

	

0.010

	

0.043

	

0.050

	

0.086

	

0.101
64

	

32

	

0.009

	

0.010

	

0.044

	

0.051

	

0.088

	

0.104
64

	

D-F

	

0.009

	

0.042

	

0.084

128

	

2

	

0.010

	

0.010

	

0.047

	

0.050

	

0.100

	

0.106
128

	

4

	

0.010

	

0.011

	

0.051

	

0.053

	

0.102

	

0.106
128

	

8

	

0.011

	

0.011

	

0.050

	

0.054

	

0.102

	

0.104
128

	

16

	

0.012

	

0.009

	

0.053

	

0.056

	

0.102

	

0.112
128

	

32

	

0.010

	

0.009

	

0.053

	

0.054

	

0.103

	

0.112
128

	

64

	

0.010

	

0.009

	

0.046

	

0.053

	

0.088

	

0.108

128

	

D-F

	

0.008

	

0.047

	

0.095

256

	

2

	

0.011

	

0.012

	

0.057

	

0.062

	

0.111

	

0.115
256

	

4

	

0.017

	

0.013

	

0.061

	

0.062

	

0.121

	

0.120
256

	

8

	

0.021

	

0.013

	

0.079

	

0.066

	

0.146

	

0.123
256

	

16

	

0.028

	

0.013

	

0.101

	

0.060

	

0.180

	

0.121
256

	

32

	

0.030

	

0.012

	

0.123

	

0.059

	

0.217

	

0.118
256

	

64

	

0.031

	

0.012

	

0.130

	

0.060

	

0.227

	

0.114
256

	

128

	

0.026

	

0.011

	

0.103

	

0.054

	

0.189

	

0.110
256

	

D-F

	

0.025

	

0.118

	

0.207

512

	

2

	

0.016

	

0.017

	

0.066

	

0.070

	

0.125

	

0.131
512

	

4

	

0.023

	

0.019

	

0.090

	

0.082

	

0.165

	

0.150
512

	

8

	

0.038

	

0.020

	

0.140

	

0.087

	

0.227

	

0.162
512

	

16

	

0.075

	

0.020

	

0.225

	

0.088

	

0.341

	

0.161
512

	

32

	

0.144

	

0.019

	

0.341

	

0.083

	

0.491

	

0.158
512

	

64

	

0.203

	

0.017

	

0.469

	

0.079

	

0.640

	

0.140

(conpnued)
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where

Sample
Size

4

λ - ρσΈ + σy

Table 3.Sa. (continued)

1 Percent Test

	

5 Percent Test

	

10 Percent Test

χι ~q)

	

Qλ

	

zi (4)

	

Q1

	

χι (4)

	

Qλ

512

	

128

	

0.196

	

0.016

	

0.514

	

0.071

	

0.686

	

0.130
512

	

256

	

0.097

	

0.014

	

0.345

	

0.064

	

0.517

	

0.124
512

	

D-F

	

0.189

	

0.478

	

0.654

1024

	

2

	

0.026

	

0.025

	

0.092

	

0.091

	

0.159

	

0.162
1024

	

4

	

0.053

	

0.033

	

0.165

	

0.114

	

0.257

	

0.206
1024

	

8

	

0.124

	

0.034

	

0.304

	

0.136

	

0.413

	

0.238
1024

	

16

	

0.272

	

0.038

	

0.497

	

0.146

	

0.632

	

0.254
1024

	

32

	

0.510

	

0.034

	

0.755

	

0.134

	

0.853

	

0.235
1024

	

64

	

0.769

	

0.025

	

0.928

	

0.107

	

0.970

	

0.197
1024

	

128

	

0.859

	

0.023

	

0.981

	

0.092

	

0.995

	

0.170
1024

	

256

	

0.855

	

0.019

	

0.983

	

0.080

	

0.997

	

0.155
1024

	

512

	

0.530

	

0.018

	

0.844

	

0.075

	

0.934

	

0.147

1024

	

D-F

	

0.915

	

0.993

	

0.999

Note that this specification contains a unit root (it is an ARIMA(1, 1, 1)),
and hence, asymptotically, the power of the Dickey-Fuller t-test should equal
its size . 25 However, since Schwert (1987a,b) has shown the finite-sample
behavior of the Dickeγ-Fuller test to be quite erratic, we report its power for
comparison .

Table 3 .5b gives the power results for the zl-, QI-, and t-statistics against
this ARIMA(1, 1, 1) alternative where the variance of the random walk in-
novation is twice the variance of the AR(1) disturbance . Although none of
the tests are especially powerful under these parameter values, the variance
ratio test seems to dominate the other two . For a sample size of 1024, the
power of the variance ratio test is 24 .1 percent for q = 32 whereas the corre-
sponding power of the Dickey-Fuller and Box-Pierce tests are 10 .4 and 7.9
percent, respectively.

25 ~o see this, observe that (3.4 .4) has the following ARIMA(1, 1, 1) representation :

(1 - pL)(1 - L)Χi = (1 - λL)νt ,

and 2 _ ~(1+ρ 2)σΈ + 2σy~
~~ _ (1 + λ2 )
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3. The Size and Power ~f the Variance Ratio Test

Table 3.Sb . Power of the two-sided var~an~e ratio test (using the zi (q)-statistic)
against the ARIMA(1, 1, 1) alternative X~ = Y~ + Z~, where Y~ = 0.96 Y~_~ -~ ~s , ~ r
IID N(0, 1) and Z~ = Zi _~ -}- y~, y~ IID N(0, 2) . For comparison, the power of the
one-sided BogyPierce Q-test ( Qi ) and the two-sided Dickey Fuller t-test (D F) are also
reported. Each set ~f rows with a gwen sample size forms a separate and independent
simulation experiment based on 20, 000 replications .

Sample
Size

q
1 Percent Test

	

5 Percent Test

	

10 Percent Test

zι(4)

	

Qλ

	

zι (q)

	

Qι

	

zιίq)

	

Q~

32

	

2

	

0.008

	

0.010

	

0.045

	

0.048

	

0.095

	

0.098
32

	

4

	

0.010

	

0.010

	

0.045

	

0.047

	

0.098

	

0.096
32

	

8

	

0.010

	

0.011

	

0.047

	

0.049

	

0.094

	

0.101
32

	

16

	

0.009

	

0.010

	

0.046

	

0.051

	

0.094

	

0.100

32

	

D-F

	

0.010

	

0.049

	

0.094

64

	

2

	

0.009

	

0.010

	

0.048

	

0.048

	

0.096

	

0.100
64

	

4

	

0.010

	

0.010

	

0.046

	

0.050

	

0.094

	

0.102
64

	

8

	

0.009

	

0.009

	

0.045

	

0.050

	

0.092

	

0.104
64

	

16

	

0.009

	

0.009

	

0.044

	

0.052

	

0.089

	

0.101
64

	

32

	

0.010

	

0.010

	

0.047

	

0.051

	

0.091

	

0.104

64

	

D-F

	

0.009

	

0.046

	

0.094

128

	

2

	

0.009

	

0.010

	

0.046

	

0.051

	

0.098

	

0.104
128

	

4

	

0.011

	

0.011

	

0.052

	

0.053

	

0.099

	

0.104
128

	

8

	

0.012

	

0.011

	

0.053

	

0.052

	

0.104

	

0.102
128

	

16

	

0.011

	

0.011

	

0.052

	

0.054

	

0.103

	

0.107
128

	

32

	

0.009

	

0.009

	

0.047

	

0.053

	

0.102

	

0.105
128

	

64

	

0.010

	

0.009

	

0.045

	

0.053

	

0.087

	

0.106

128

	

D-F

	

0.009

	

0.048

	

0.101

256

	

2

	

0.010

	

0.012

	

0.054

	

0.059

	

0.106

	

0.111
256

	

4

	

0.015

	

0.012

	

0.055

	

0.057

	

0.113

	

0.115
256

	

8

	

0.015

	

0.011

	

0.068

	

0.059

	

0.126

	

0.118
256

	

16

	

0.018

	

0.012

	

0.075

	

0.054

	

0.138

	

0.106
256

	

32

	

0.016

	

0.013

	

0.072

	

0.054

	

0.131

	

0.109
256

	

64

	

0.014

	

0.012

	

0.063

	

0.056

	

0.117

	

0.106
256

	

128

	

0.014

	

0.010

	

0.055

	

0.052

	

0.107

	

0.104

256

	

D-F

	

0.015

	

0.069

	

0.129

512

	

2

	

0.014

	

0.014

	

0.061

	

0.065

	

0.119

	

0.123
512

	

4

	

0.018

	

0.017

	

0.077

	

0.074

	

0.141

	

0.139
512

	

8

	

0.025

	

0.016

	

0.101

	

0.072

	

0.178

	

0.140
512

	

16

	

0.034

	

0.014

	

0.124

	

0.071

	

0.210

	

0.133
512

	

32

	

0.036

	

0.014

	

0.120

	

0.064

	

0.206

	

0.129
512

	

64

	

0.027

	

0.014

	

0.095

	

0.065

	

0.170

	

0.119

(continued)
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Sample
Size

4

Table 3 . Sb . (continued)

1 Percent Test

	

5 Percent Test

	

10 Percent Test

Χι ίq)

	

Qλ

	

χι ίq)

	

Qι

	

zι ίq)

	

Qλ

512

	

128

	

0.020

	

0.013

	

0.079

	

0.064

	

0.138

	

0.112
512

	

256

	

0.015

	

0.012

	

0.063

	

0.059

	

0.120

	

0.115

512

	

D-F

	

0.021

	

0.081

	

0.147

1024

	

2

	

0.024

	

0.023

	

0.085

	

0.085

	

0.150

	

0.153
1024

	

4

	

0.040

	

0.024

	

0.132

	

0.091

	

0.207

	

0.169
1024

	

8

	

0.065

	

0.023

	

0.196

	

0.097

	

0.290

	

0.177
1024

	

16

	

0.096

	

0.021

	

0.236

	

0.092

	

0.355

	

0.163
1024

	

32

	

0.094

	

0.017

	

0.241

	

0.079

	

0.355

	

0.144
1024

	

64

	

0.064

	

0.014

	

0.178

	

0.067

	

0.277

	

0.129
1024

	

128

	

0.030

	

0.013

	

0.118

	

0.061

	

0.197

	

0.120
1024

	

256

	

0.025

	

0.011

	

0.085

	

0.057

	

0.148

	

0.117
1024

	

512

	

0.021

	

0.012

	

0.074

	

0.057

	

0.132

	

0.112

1024

	

D-F

	

0.032

	

0.104

	

0.173

As in the case of the stationary AR(1) alternative, the power of the
variance ratio test also rises and falls with q against the ARIMA(l, 1, 1) al-
ternative . In addition to the factors discussed in Section 3 .4.2, there is an
added explanation for this pattern of power. For small to medium differenc-
ing intervals the increments of X~ behave much like increments of an AR(1) ,
hence power increases with q in this range . For longer differencing intervals
the random walk component dominates . Hence the power declines beyond
some aggregation value q .

As the variance of the random walk's disturbance declines relative to the
variance of the stationary component's, the power of the variance ratio test
increases . Table 3 .5c reports power results for the case where the variances
of the two components' innovations are equal, and in Table 3 .5d the variance
of the random walk innovation is half the variance of the AR(1) innovation .
In the latter case, the 5 percent variance ratio test has 89 .8 percent power
for q = 32 and T = 1024 compared to 41 .7 percent and 18.4 percent
power for the Dickey-Fuller and Box-Pierce tests, respectively . Although the
qualitative behavior of the three tests are the same in Tables 3 .5b-3.5d, the
variance ratio test is considerably more powerful than the other two when
the variance of the stationary component is larger than that of the random
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3. The Size and Power of the Variance Ratio Test

Table 3 .5~. Power of the two-sided variance ratio test (using the zi (q)-statistic)
against the AWMA(1, 1, 1) alternative X~ = Y~ + Z~, where Y~ = 0.96 Y~_I + ~~, ~~
IIDN(0, 1) and Z~ = Zl-~ ~- Y~, Y~ ImN(0, 1) . For comparison, the power of the
one-sided Box Pierce Q-test ( Qi ) and the two-sided Dickey Fuller t-test (D F) are also
reported. Each set of rows with a gwen sample size forms a separate and independent
simulation experiment based on 20, 000 replications .

Sample
Size

q
1 Percent Test

	

5 Percent Test

	

10 Percent Test

χι(q)

	

Q~

	

χι(q)

	

Q~

	

χι(4)

	

Qι

32

	

2

	

0.008

	

0.010

	

0.049

	

0.049

	

0.095

	

0 .099
32

	

4

	

0.010

	

0.010

	

0.046

	

0.051

	

0.093

	

0.102
32

	

8

	

0.009

	

0.012

	

0.045

	

0.052

	

0.092

	

0.106
32

	

16

	

0.008

	

0.012

	

0.045

	

0.053

	

0.094

	

0.102

32

	

D-F

	

0.009

	

0.049

	

0.096

64

	

2

	

0.010

	

0.010

	

0.048

	

0.049

	

0.096

	

0.102
64

	

4

	

0.008

	

0.009

	

0.048

	

0.054

	

0.100

	

0.105
64

	

8

	

0.009

	

0.009

	

0.047

	

0.054

	

0.099

	

0.111
64

	

16

	

0.010

	

0.009

	

0.048

	

0.054

	

0.095

	

0.105
64

	

32

	

0.010

	

0.009

	

0.047

	

0.052

	

0.093

	

0.107

64

	

D-F

	

0.009

	

0.045

	

0.092

128

	

2

	

0.010

	

0.012

	

0.049

	

0.056

	

0.102

	

0.113
128

	

4

	

0.012

	

0.013

	

0.062

	

0.058

	

0.115

	

0.113
128

	

8

	

0.014

	

0.013

	

0.062

	

0.061

	

0.122

	

0.115
128

	

16

	

0.016

	

0.012

	

0.068

	

0.060

	

0.125

	

0.118
128

	

32

	

0.013

	

0.012

	

0.060

	

0.059

	

0.117

	

0.115
128

	

64

	

0.012

	

0.012

	

0.053

	

0.058

	

0.098

	

0.112

128

	

D-F

	

0.012

	

0.056

	

0.114

256

	

2

	

0.013

	

0.015

	

0.060

	

0.065

	

0.114

	

0.122
256

	

4

	

0.021

	

0.015

	

0.073

	

0.071

	

0.142

	

0.136
256

	

8

	

0.027

	

0.015

	

0.103

	

0.072

	

0.178

	

0.137
256

	

16

	

0.034

	

0.013

	

0.120

	

0.062

	

0.212

	

0.122
256

	

32

	

0.026

	

0.013

	

0.120

	

0.058

	

0.207

	

0.117
256

	

64

	

0.023

	

0.014

	

0.092

	

0.062

	

0.165

	

0.118
256

	

128

	

0.019

	

0.012

	

0.072

	

0.056

	

0.133

	

0.112

256

	

D-F

	

0.024

	

0.098

	

0.175

512

	

2

	

0.022

	

0.023

	

0.087

	

0.092

	

0.151

	

0.159
512

	

4

	

0.036

	

0.026

	

0.129

	

0.106

	

0.209

	

0.188
512

	

8

	

0.058

	

0.024

	

0.191

	

0.100

	

0.294

	

0.186
512

	

16

	

0.088

	

0.021

	

0.251

	

0.093

	

0.377

	

0.169
512

	

32

	

0.095

	

0.019

	

0.257

	

0.081

	

0.387

	

0.153
512

	

64

	

0.067

	

0.018

	

0.194

	

0.076

	

0.311

	

0.136

(continued)
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Sample
Size

4

Table 3.5c. (continued)

1 Percent Test

	

5 Percent Test

	

10 Percent Test
χι (4)

	

Q~

	

χι(Q)

	

Qt

	

z~ (q)

	

Q~

512

	

128

	

0.044

	

0.017

	

0.146

	

0.070

	

0.224

	

0.129
512

	

256

	

0.028

	

0.014

	

0.106

	

0.064

	

0.171

	

0.124

512

	

D-F

	

0.053

	

0.155

	

0.241

1024

	

2

	

0.038

	

0.036

	

0.122

	

0.123

	

0.201

	

0.206
1024

	

4

	

0.085

	

0.046

	

0.230

	

0.156

	

0.337

	

0.261
1024

	

8

	

0.173

	

0.043

	

0.393

	

0.162

	

0.513

	

0.272
1024

	

16

	

0.285

	

0.035

	

0.513

	

0.142

	

0.654

	

0.245
1024

	

32

	

0.305

	

0.028

	

0.552

	

0.116

	

0.686

	

0.203
1024

	

64

	

0.213

	

0.021

	

0.426

	

0.091

	

0.571

	

0.169
1024

	

128

	

0.093

	

0.019

	

0.259

	

0.078

	

0.381

	

0.148
1024

	

256

	

0.062

	

0.014

	

0.169

	

0.068

	

0.262

	

0.134
1024

	

512

	

0.040

	

0.013

	

0.126

	

0.065

	

0.200

	

0.131

1024

	

D-F

	

0.078

	

0.200

	

0.292
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walk. Moreover, the pattern of power as a function of q clearly demonstrates
that against this alternative, it is not optimal to set q as large as possible . 2s

Since both the stationary AR(1) and the AR(1) plus random walk are
not empirically supported by Lo and MacKinlay's (1988b) results for weekly
stock returns, we consider the power of the variance ratio test against a
more relevant alternative hypothesis suggested by their empirical findings :
an integrated AR(1), i .e ., an ARIMA(1, 1, 0) . Specifically, if X~ is the log-
price process, then we assume

(X~ - X~-I) _ ~ • (X~-~ - X~-2) -}- ~'~, ~a IID JV(0, ~~),

	

(3.4.6)

where ~~~ < 1 . Since this alternative obviously possesses a unit root, we ex-
pect the standard unit root tests to have poor power against it . Nevertheless
for comparison we report the power of the Dickey-Fuller t-test along with
the power of the variance ratio and Box-Pierce tests . The parameters (~, ~~ )

are set to (0 .20, 1) for all the simulations in Table 3 .5e. Unlike its behavior
under the stationary AR(1) alternative, against this integrated process the
variance ratio's power declines as q increases . With a sample size of 1024,
the power of a 5 percent test is 100 percent when q = 2, but falls to 9 .3 per-

2s In fact, the q for which the variance test has the most power for a given sample size
will depend on the ratio of the stationary component's innovation variance to the variance
of the random walk's disturbance . Unfortunately, this fact cannot be observed in our tables
because we have set q to be powers of 2 for computational convenience . If the variance ratio
test's power were tabulated for q = 2 > 3, 4, . . . , T - 1, it would be apparent that against this
ARIMA(1, 1, 1) alternative the optimal q changes with the ratio of the innovation invariances
of the two components .
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3. The Size and Poz~er of the Variance Ratio Test

Table 3.Sd. Power of the two-sided variance ratio test (using the z~(q)-statistic)
against the AWMA(1, l, 1) alternative X~ = Y~ + 7,~, where Y~ = 0.96 Y~_ i -F ~ r , ~~
Im N(0, 1) and 7n = Z~_~ + yr, yr IID N(0, 2) . For comparison, the power of the
one-sided Box-Pierιe Q-test ( Q~ ) and the two-sided Dickey Fuller t-test (D-F) are αlsο
reported. Each set of rows with a given sample size forms a separate and independent
simulation experiment based on 20, 000 replications .

Sample
Size

4
1 Percent Test

	

5 Percent Test

	

10 Percent Test

χι(q)

	

~

	

χi(q)

	

Q

	

χι(q)

	

Qι

32

	

2

	

0.008

	

0.010

	

0.045

	

0.048

	

0.091

	

0.097
32

	

4

	

0.010

	

0.010

	

0.048

	

0.050

	

0.093

	

0.103
32

	

8

	

0.009

	

0.012

	

0.046

	

0.054

	

0.096

	

0.110
32

	

16

	

0.008

	

0.012

	

0.044

	

0.054

	

0.093

	

0.102
32

	

D-F

	

0.009

	

0.048

	

0.093

64

	

2

	

0.011

	

0.012

	

0.050

	

0.054

	

0.103

	

0.112
64

	

4

	

0.013

	

0.012

	

0.050

	

0.061

	

0.104

	

0.115
64

	

8

	

0.011

	

0.013

	

0.052

	

0.059

	

0.104

	

0.119
64

	

16

	

0.011

	

0.013

	

0.047

	

0.062

	

0.095

	

0.116
64

	

32

	

0.010

	

0.013

	

0.044

	

0.060

	

0.089

	

0.115
64

	

D-F

	

0.010

	

0.047

	

0.094

128

	

2

	

0.011

	

0.014

	

0.054

	

0.061

	

0.106

	

0.117
128

	

4

	

0.014

	

0.014

	

0.070

	

0.065

	

0.127

	

0.128
128

	

8

	

0.019

	

0.014

	

0.080

	

0.068

	

0.149

	

0.127
128

	

16

	

0.023

	

0.012

	

0.089

	

0.065

	

0.156

	

0.124
128

	

32

	

0.016

	

0.011

	

0.084

	

0.062

	

0.155

	

0.120
128

	

64

	

0.014

	

0.012

	

0.063

	

0.057

	

0.120

	

0.113
128

	

D-F

	

0.015

	

0.072

	

0.139

256

	

2

	

0.018

	

0.021

	

0.075

	

0.084

	

0.139

	

0.146
256

	

4

	

0.035

	

0.020

	

0.102

	

0.088

	

0.182

	

0.167
256

	

8

	

0.047

	

0.019

	

0.155

	

0.088

	

0.255

	

0.166
256

	

16

	

0.067

	

0.016

	

0.205

	

0.081

	

0.324

	

0.151
256

	

32

	

0.060

	

0.016

	

0.207

	

0.072

	

0.331

	

0.139
256

	

64

	

0.043

	

0.015

	

0.160

	

0.069

	

0.268

	

0.128
256

	

128

	

0.032

	

0.012

	

0.108

	

0.063

	

0.196

	

0.123

256

	

D-F

	

0.050

	

0.170

	

0.273

512

	

2

	

0.032

	

0.035

	

0.113

	

0.119

	

0.187

	

0.196
512

	

4

	

0.063

	

0.040

	

0.193

	

0.149

	

0.299

	

0.249
512

	

8

	

0.121

	

0.039

	

0.322

	

0.145

	

0.448

	

0.251
512

	

16

	

0.210

	

0.031

	

0.463

	

0.124

	

0.607

	

0.220
512

	

32

	

0.255

	

0.025

	

0.516

	

0.104

	

0.669

	

0.192

(continued)
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Sample
Size

4

Table 3.Sd. (continued)

1 Percent Test

	

5 Percent Test

	

10 Percent Test

zι (4~

	

~

	

χι (4)

	

Qι

	

χι ί4)

	

Qι

512

	

64

	

0.178

	

0.021

	

0.406

	

0.091

	

0.567

	

0.165
512

	

128

	

0.103

	

0.018

	

0.280

	

0.082

	

0.399

	

0.150
512

	

256

	

0.059

	

0.017

	

0.186

	

0.073

	

0.283

	

0.142

512

	

D-F

	

0.132

	

0.306

	

0.427

1024

	

2

	

0.068

	

0.065

	

0.187

	

0.187

	

0.282

	

0.287
1024

	

4

	

0.170

	

0.095

	

0.374

	

0.256

	

0.496

	

0.391
1024

	

8

	

0.371

	

0.092

	

0.638

	

0.292

	

0.745

	

0.440
1024

	

16

	

0.613

	

0.074

	

0.825

	

0.249

	

0.904

	

0.396
1024

	

32

	

0.711

	

0.053

	

0.898

	

0.184

	

0.951

	

0.304
1024

	

64

	

0.576

	

0.035

	

0.811

	

0.134

	

0.899

	

0.230
1024

	

128

	

0.281

	

0.028

	

0.559

	

0.110

	

0.699

	

0.192
1024

	

256

	

0.163

	

0.022

	

0.344

	

0.090

	

0.471

	

0.169
1024

	

512

	

0.100

	

0.021

	

0.239

	

0.086

	

0.339

	

0.159
1024

	

D-F

	

0.227

	

0.417

	

0.525

cent when q = 512. In contrast to the AR(1) , the behavior of the integrated
process's increments is farthest from a random walk for short differencing
intervals (since the increments follow a stationary AR(1) by construction) .
As the differencing interval increases, the autocorrelation of the increments
decreases and it becomes more difficult to distinguish between this process
and the random walk .

Observe that for smaller aggregation values the variance ratio test is
more powerful than the Q-test, but the Q-test dominates when q is large .
This result is due to the fact that the Box-Pierce Q does not distinguish
between the upper and lower tails of the null distribution (since Q is the
sum of squared autocorrelations) whereas the variance ratio test does .

3.5 Conclusion

Our simulations indicate that the variance ratio test of the random walk
hypothesis generally yields reliable inferences under both the IID Gaussian
and the heteroskedastic null hypotheses . By selecting the aggregation value
q appropriately, the power of the variance ratio test is comparable to that of
the Box-Pierce and Dickey-Fuller tests against the stationary AR(1) alterna-
tive and is more powerful than either of the two tests against the two unit
root alternatives . However, because of the variance ratio's skewed empirical
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3. The Size and Power of the Variance Ratio Test

Table 3 .Se. Power of the two-sided variance ratio test (using the statistic z~(g))
against the AWMA(1, 1, 0) alternative ~X~ _ ~ ~X~_ ~ + v i , v~ IID N(0, 1), ~ _
0.20 . For comparison, the power of the one-sided Box Pierce Q-test (Q~ ) and the
two-sided Dickey Fuller t-test (DF) are also reported . Each set of rows with a given
sample size forms a separate and independent simulation experiment based on 20, 000
replications.

Sample
Size

R
1 Percent Test

	

5 Percent Test

	

10 Percent Test

χι(q)

	

Q~

	

χι(q)

	

Qι

	

χι(q)

	

Q~

32

	

2

	

0.057

	

0.037

	

0.176

	

0.128

	

0.270

	

0 .213
32

	

4

	

0.046

	

0.021

	

0.141

	

0.094

	

0.226

	

0.167
32

	

8

	

0.029

	

0.022

	

0.098

	

0.086

	

0.168

	

0.157
32

	

16

	

0.026

	

0.023

	

0.095

	

0.085

	

0.166

	

0.147

32

	

D-F

	

0.143

	

0.240

	

0.301

64

	

2

	

0.148

	

0.119

	

0.342

	

0.292

	

0.463

	

0.417
64

	

4

	

0.104

	

0.071

	

0.263

	

0.195

	

0.368

	

0.298
64

	

8

	

0.059

	

0.050

	

0.168

	

0.156

	

0.254

	

0.248
64

	

16

	

0.035

	

0.04Π

	

0.114

	

0.135

	

0.181

	

0.218
64

	

32

	

0.032

	

0.036

	

0.097

	

0.123

	

0.164

	

0.209

64

	

D-F

	

0.143

	

0.240

	

0.308

128

	

2

	

0.377

	

0.323

	

0.600

	

0.564

	

0.719

	

0.687

128

	

4

	

0.257

	

0.197

	

0.455

	

0.413

	

0.576

	

0.542
128

	

8

	

0.122

	

0.126

	

0.280

	

0.305

	

0.388

	

0.422

128

	

16

	

0.059

	

0.082

	

0.167

	

0.231

	

0.254

	

0.344
128

	

32

	

0.034

	

0.058

	

0.108

	

0.184

	

0.175

	

0.290
128

	

64

	

0.029

	

0.050

	

0.093

	

0.166

	

0.153

	

0.268

128

	

D-F

	

0.138

	

0.235

	

0.302

256

	

2

	

0.741

	

0.709

	

0.887

	

0.876

	

0.934

	

0.928
256

	

4

	

0.526

	

0.529

	

0.744

	

0.749

	

0.836

	

0,836
256

	

8

	

0.276

	

0.361

	

0.498

	

0.612

	

Π.fi14

	

Π.726
256

	

16

	

0.125

	

0229

	

0.298

	

0.454

	

0.401

	

0.588
256

	

32

	

0.069

	

0.160

	

0.172

	

0.348

	

0.261

	

0.479
256

	

64

	

0.036

	

0.115

	

0.105

	

0.285

	

0.177

	

0.400
256

	

128

	

0.032

	

0.088

	

0.095

	

0.241

	

0.158

	

0.362

256

	

D-F

	

0.138

	

0.238

	

0.299

512

	

2

	

0.972

	

0.969

	

0.993

	

0.993

	

0.997

	

0.997
512

	

4

	

0.871

	

0.918

	

0 .957

	

0.976

	

0.978

	

0.988
512

	

8

	

0.571

	

0.813

	

0.779

	

Π.931

	

0.855

	

0.965
512

	

16

	

0.290

	

0.652

	

0.523

	

0.845

	

0.633

	

0.909
512

	

32

	

0.139

	

0.481

	

0.300

	

0.706

	

0.407

	

0.809

(continued)
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Table 3.Se. (continued)

Sample
Size 4

1 Percent Test

	

5 Percent Test

	

10 Percent Test

χι(q)

	

Q~

	

χι(q)

	

Qι

	

χιίq)

	

Qι

512

	

64

	

0.069

	

0.320

	

0.168

	

0.571

	

0.263

	

0.688
512

	

128

	

0.035

	

0.227

	

0.112

	

0.455

	

0.181

	

0.580
512

	

256

	

0.032

	

0.182

	

0.097

	

0.380

	

0.159

	

0.519

512

	

D-F

	

0.136

	

0.236

	

0.304

1024

	

2

	

1.000

	

1.000

	

1.000

	

1.000

	

1.000

	

1 .000
1024

	

4

	

0.996

	

0.999

	

0.999

	

1.000

	

1.000

	

1 .000
1024

	

8

	

0.893

	

0.995

	

0.969

	

0.999

	

0.985

	

1 .000
1024

	

16

	

0.585

	

0.978

	

0.783

	

0.996

	

0.862

	

0.998
1024

	

32

	

0.301

	

0.918

	

0.509

	

0.976

	

0.629

	

0.989
1024

	

64

	

0.144

	

0.767

	

0.295

	

0.911

	

0.411

	

0.952
1024

	

128

	

0.061

	

0.581

	

0.176

	

0.792

	

0.265

	

0.874
1024

	

256

	

0.035

	

0.411

	

0.110

	

0.663

	

0.174

	

0.780
1024

	

512

	

0.028

	

0.334

	

0.093

	

0.586

	

0.157

	

0.170

1024

	

D-F

	

0.142

	

0.248

	

0.314

distribution, caution must be exercised when q is large relative to the sample
size .

These results emphasize dramatically the obvious fact that the power
of any test may differ substantially across alternatives . A sensible testing
strategy must consider not only the null hypothesis but also the most rele-
vant alternative. Although the variance ratio test has advantages over other
tests under some null and alternative hypotheses, there are of course other
situations in which those tests may possess more desirable properties . Nev-
ertheless, the Monte Carlo evidence suggests that the variance ratio test has
reasonable power against a wide range of alternatives. 27 The simplicity, re-
liability, and flexibility of the variance ratio test make it a valuable tool for
inference .

27 See Hausman (1988) for further evidence of this .



An Econometric Analysis of
Nonsynchronous Trading

4.1 Introduction

IT HAS LONG BEEN RECOGNIZED that the sampling of economic time series
plays a subtle but critical role in determining their stochastic properties .
Perhaps the best example of this is the growing literature on temporal aggre-
gation biases which are created by confusing stock and flow variables . This
is the essence of Working's (1960) now classic result in which time-averages
are mistaken for point-sampled data . More generally, econometric prob-
lems are bound to arise when we ignore the fact that the statistical behavior
of sampled data may be quite different from the behavior of the underlying
stochastic process from which the sample was obtained . Yet another manifes-
tation of this general principle is what may be called the "nonsynchronicity"
problem, which results from the assumption that multiple time series are
sampled simultaneously when in fact the sampling is nonsynchronous . For
example the daily prices of financial securities quoted in the Wall Street four-
n~l are usually "closing" prices, prices at which the last transaction in each
of those securities occurred on the previous business day . It is apparent that
closing prices of distinct securities need not be set simultaneously, yet few
empirical studies employing daily data take this into account .

Less apparent is the fact that ignoring this seemingly trivial nonsyn-
chronicity can result in substantially biased inferences for the temporal be-
havior of asset returns. To see how, suppose that the returns to stocks i and
j are temporally independent but i trades less frequently than j . If news
affecting the aggregate stock market arrives near the close of the market on
one day, it is more likely that j's end-of-day price will reflect this information
than is simply because i may not trade after the news arrives . Of course, i
will respond to this information eventually but the fact that it responds with
a lag induces spurious cross-autocorrelation between the closing prices of

85
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4. An Econometric Analysis of Nonsynchronous Trading

i and j . As a result, a portfolio consisting of securities i and j will exhibit
serial dependence even though the underlying data-generating process was
assumed to be temporally independent . Spurious own-autocorrelation is
created in a similar manner. These effects have obvious implications for the
recent tests of the random walk and efficient markets hypotheses .

In this chapter we propose a simple stochastic model for this phe-
nomenon, known to financial economists as the "nonsynchronous trading"
or "nontrading" problem . Our specification captures the essence of non-
trading but is tractable enough to permit explicit calculation of all the rel-
evant time series properties of sampled data. Since most empirical investi-
gations of stock price behavior focus on returns or price changes, we take
as primitive the (unobservable) return-generating process of a collection of
securities. The nontrading mechanism is modeled as a random censoring
of returns where censored observations are cumulated, so that observed re-
turns are the sum of all prior returns that were consecutively censored. For
example, consider a sequence of five consecutive days for which returns are
censored only on days 3 and 4 ; the observed return on day 2 is assumed to be
the true or "virtual" return, determined by the primitive return-generating
process. Observed returns on day 3 and 4 are zero, and the observed return
on day 5 is the sum of virtual returns from days 3 to 5 . 1 Each period's virtual
return is random and captures movements caused by information arrival as
well as idiosyncratic noise . The particular censoring (and cumulation) pro-
cess we employ models the lag with which news and noise is incorporated
into security prices due to infrequent trading . By allowing cross-sectional
differences in the random censoring processes, we are able to capture the
effects of nontrading on portfolio returns when only a subset of securities
suffers from infrequent trading . Although the dynamics of our stylized
model are surprisingly rich, they yield several important empirical impli-
cations. Using these results we estimate the probabilities of nontrading to
quantify the effects of nonsynchronicity on returns-based inferences, such as
the rejection of the random walk hypothesis in Lo and MacKinlay (1988b) ) .

Perhaps the first to recognize the importance of nonsynchronous price
quotes was Fisher (1966) ) . Since then more explicit models of nontrading
have been developed by Scholes and Williams (1977)), Cohen et al . (1978,
1986), and Dimson (1979) ) . Whereas earlier studies considered the effects
of nontrading on empirical applications of the Capital Asset Pricing Model
and the Arbitrage Pricing Theory, 2 more recent attention has been focused

1 Day 1's return obviously depends on how many consecutive days prior to 1 that the security
did not trade . If it traded on day 0, then the day 1 return is simply equal to its virtual return ;
if it did not trade at 0 but did trade at -1, then day 1's return is the sum of day 0 and day 1's
virtual returns; etc .

2 See, for example, Cohen et al . (1983a,ó), Dimson (1979) ), Scholes and Williams (1977) ),
andShanken (1987a)) .
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on spurious autocorrelations induced by nonsynchronous trading . 3 Our
emphasis also lies in the autocorrelation and cross-autocorrelation proper-
ties of nonsynchronously sampled data and the model we propose extends
and generalizes existing results in several directions . First, previous formula-
tions of nontrading require that each security trades within some fixed time
interval whereas in our approach the time between trades is stochastic .4
Second, our framework allows us to derive closed-form expressions for the
means, variances, and covariances of observed returns as functions of the
nontrading process. These expressions yield simple estimators for the prob-
abilities of nontrading . For example we show that the relative likelihood
of security i trading more frequently than security j is given by the ratio of
the (i, j)th autocovariance with the (j, i)th autocovariance. With this result,
specification tests for nonsynchronous trading may be constructed based on
the degree of asymmetry in the autocovariance matrix of the returns pro-
cess. Third, we present results for portfolios of securities grouped by their
probabilities of nontrading ; in contrast to the spurious autocorrelation in-
duced in individual security returns which is proportional to the square of its
expected return, we show that nontrading induced autocorrelation in port
folio returns does not depend on the mean. This implies that the effects
of nontrading may not be detectable in the returns of individual securities
(since the expected daily return is usually quite small), but will be more
pronounced in portfolio returns. Fourth, we quantify the impact of time
aggregation on nontrading effects by deriving closed-form expressions for
the moments of time-aggregated observed returns . Allowing for random
censoring at intervals arbitrarily finer than the finest sampling interval for
which we have data lets us uncover aspects of infrequent trading previously
invisible to econometric scrutiny. This also yields testable restrictions on
the time series properties of coarser-sampled data once a sampling inter-
val has been selected. Finally, we apply these results to daily, weekly, and
monthly stock returns to gauge the empirical relevance of nontrading for
recent findings of predictability in asset returns.

In Section 4.2 we present our model of nontrading and derive its impli-
cations for the time series properties of observed returns . Section 4.3 reports
corresponding results for time-aggregated returns and we apply these results
in Section 4 .4 to daily, weekly, and monthly data. We discuss extensions and
generalizations and conclude in Section 4 .5 .

s See Atchison, Butler, and Simonds (1987) ), Cohen et al. (1979, 1986), Lo and Ma~Kinlay
(1988b)), and Muthuswamy (1988)) .

4For example, Scholes and Williams (1977, fn . 4) assume: "All information about returns
over days in which no trades occur is ignored ." This is equivalent to forcing the security to trade
at least once within the day. Muthuswamy (1988) ) imposes a similar requirement. Assuιnption
A1 of Cohen et al. (1986, ch . 6 .1) requires that each security trades at least once in the last N
periods, where N is fixed and exogenous .
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4.2 A Model of Nonsynchronous Trading

Consider a collection of N securities with unobservable "virtual" continu-
ously-compounded returns ~~ at time t, where i = 1, . . . , N . We assume
they are generated b~ the following stochastic model :

Rίτ = ~i + ιΒiΛτ + εΖι ,

	

i = 1, . . . , Ν,

	

(4.2.1)

where ~ r is some zero-mean common factor and ~Z r is zero-mean idiosyn-
cratic noise that is temporally and cross-sectionally independent at all leads
and lags . Since we wish to focus on nontrading as the sole source of autocor-
relation, we also assume that the common factor ~ t is independently and
identically distributed and is independent of ~ ;~_k for all i, t, and k . 5

In each period t, there is some chance that security i does not trade, say
with probability p, . If it does not trade, its observed return for period t is
simply 0, although its true or "virtual" return Ri g is still given by (4 .2 .1) . In
the next period t+ 1 there is again some chance that security i does not trade,
also with probability pi. We assume that whether or not the security traded
in period t does not influence the likelihood of its trading in period t + 1 or
any other future period, hence our nontrading mechanism is independent
and identically distributed for each security i . s If security i does trade in
period t + 1 and did not trade in period t, we assume that its observed
return Ri+t at t + 1 is the sum of its virtual returns ~~+~, ~~, and virtual
returns for all past consecutive periods in which i has not traded . In fact,
the observed return in any period is simply the sum of its virtual returns for
all past consecutive periods in which it did not trade . That is, if security i
trades at time t + 1, has not traded from time t - k to t, and has traded at
time t - k - 1, then its observed time t + 1 return is simply equal to the sum
of its virtual returns from t - k to t + 1. This captures the essential feature
of nontrading as a source of spurious autocorrelation : news affects those
stocks that trade more frequently first and influences the returns of thinly
traded securities with a lag. In our framework the impact of news on returns
is captured by the virtual returns process (4.2 .1), and the lag induced by thin
or nonsynchronous trading is modeled by the observed returns process R t .

To derive an explicit expression for the observed returns process and
to deduce its time series properties we introduce two related stochastic pro-
cesses:

SThese strong assumptions are made primarily for expositional convenience and may be
relaxed considerably. See Section 4 .5 for further discussion .

6This assumption may be relaxed to allow for state-dependent probabilities, i.e ., autocor-
related nontrading; see the discussion in Section 4 .5 .
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Definition 4.2.1. Let ~ ;~ and Xir (k) be the following Bernoulli random variables :

1 with probability p~,
~tt

	

0 with probability 1 - pi,

	

(4'2'2)

Xi~(k) _- (1 - ~it)~i~-~ ~=~-2 . . . ~it-k,

	

k > 0,

_ 1 with probability (1 pi)pk,

	

4.2.3
- {0 with probability 1 - (1 - pi)pk

	

~

	

)

Xi~(0) _- 1 - fit,

	

(4.2.4)

where it has been implicitly assumed that {f ir } is an independently and identically
distributed random sequence for i = l, 2, . . . , N.

The indicator variable fir is unity when security i does not trade at time t
and zero otherwise . Xi~ (k) is also an indicator variable and takes on the value
1 when security i trades at time t but has not traded in any of the k previous
periods, and is 0 otherwise . Since pi is within the unit interval, for large k
the variable Xir(k) will be 0 with high probability. This is not surprising since
it is highly unlikely that security i should trade today but never in the past .

Having defined the Xi r (k)' s, it is now a simple matter to derive an ex-
pression for observed returns :

Definition 4.2 .2. The observed returns process R ~ is given by the following stochastic
process :

Rί = ~ Χίι(k) Νίτ-k,

	

i = 1, . . . , Ν .

	

(4.2.5)
k=0

If security i does not trade at time t, then fir = 1 which implies that
Xi~(k) = 0 for all k, thus Ri = 0. If i does trade at time t, then its observed
return is equal to the sum of today's virtual return Riι and its past kr virtual
returns, where the random variable kr is the number of past consecutive peri-
ods that i has not traded . We call this the duration of nontrading and it may
be expressed as :

οο

	

kΣΩ_-

	

, ι δί ι (4 .2 .6)
Although Definition 4 .2.2 will prove to be more convenient for subsequent
calculations, kir may be used to give a more intuitive definition of the ob-
served returns process :

Definition 4.2.3. The observed returns process Rr is given by the following stochastic
process:

k,
Ri = ~ ~r_k,

	

i = 1, . . . , N.

	

(4.2.7)
k=0
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Whereas expression (4.2 .5) shows that in the presence of nontrading
the observed returns process is a (stochastic) function of all past returns, the
equivalent relation (4.2.7) reveals that Rü may also be viewed as a random
sum with a random number of terms . To see how the probability pt is related
to the duration of nontrading, consider the mean and variance of kt~ :

Ε[kt~l =

	

ρ2
1 - fit

,

	

(4.2.8)

Varf~~l =
	p=		(4.2.9)
(1- pt)2

If pt = 2, then security i goes without trading for one period at a time

on average ; if pt = 4, then the average number of consecutive periods of
nontrading is 3. As expected, if the security trades every period so that

fit = 0, both the mean and variance of ktt are identically zero .
In Section 4 .2.1, we derive the implications of our simple nontrading

model for the time series properties of individual security returns and con-
sider corresponding results for portfolio returns in Section 4 .2.2 .

4.2. I Implications for Individual Returns

To see how nontrading affects the time series properties of individual re-
turns, we require the moments of R° which in turn depend on the moments
ofXt t (k) . To conserve space we summarize the results here and relegate their
derivation to the appendix :

Prof~osition 4.2.1. Under Definition 4 .2.2 the observed returns processes {R°i } (i =
1, . . . , N) are covariance-stationary z~ith the following first and second moments :

Ε[R°l = ~~,

	

(4.2.10)

Var[R~i] = 	2p` μ?,

	

(4.2.11)
1 - ρ2

This is similar in spirit to the Scholes and Williams (1977) ) subordinated stochastic pro-
tens representation of observed returns, although we do not restrict the trading times to take
values in a fixed finite interval . With suitable normalizations it may be shown that our nontrad-
ing model converges weakly to the continuous-time Poisson process of Scholes and Williams
(1976)) . From (4.2 .5) [he observed returns process may also be considered an infinite-order
moving average of virtual returns where the MA coefficients are stochastic . This is in contrast
to Cohen et al . (1986, ch . 6) in which observed returns are assumed to be a finite-order MA
process with nonstochastic coefficients. Although our nontrading process is more general,
their observed returns process includes a bid-ask spread component ; ours does not.
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-μ2ρη

	

fηη i = ~, η > ο,
τ

	

τ

Gov[R~, R,~+n] _ (1 - pß)(1 -p~)

	

2 n
ßcß;~λp; f°Y2# .1~n?0~

~-p=p;
2 ~n

Corr[R°, R°+n ] _

	

-~~

	

n > 0

	

(4.2.13)
~2 +

2pß
~2 ,

1 - pt

where ~2-Var[~{~ t ] and~~ = Var[~ t ] .

From (4.2.10) and (4 .2.11) it is clear that nontrading does not affect
the mean of observed returns but does increase their variance if the secu-
rity has a nonzero expected return . Moreover, (4 .2.13) shows that having
a nonzero expected return induces negative serial correlation in individual
security returns at all leads and lags which decays geometrically. That the
autocorrelation vanishes if the security's mean return ~i is zero is an im-
plication of nonsynchronous trading that does not extend to the observed
returns of portfolios .

Proposition 4.2.1 also allows us to calculate the maximal negative auto-
correlation for individual security returns that is attributable to nontrading .
Since the autocorrelation of observed returns (4 .2.13) is a nonpositive con-
tinuous function of p Z , is zero at pi = 0, and approaches zero as pt approaches
unity, it must attain a minimum for some pi ~ [0, 1) . Determining this lower
bound is a straightforward exercise in calculus hence we calculate it only
for the first-order autocorrelation and leave the higher-order cases to the
reader.

Corollary 4.2.1. Under Definition 4 .2.2 the minimum first-order autocorrelation of
the observed returns process {R t} with respect to nontrading probabilities p i exists, is
given by

and is attained at

where ~t =_ ~;1~~ . Over all values of p~ E [0, 1) and ~~ E (-oo, -I-oo), we have

inf Corr [R~, R ~+~ ] _ - 2 ,

	

(4.2.16)
{p„g ;}

which is the limit of (4 .2.14) as I~= increases without bound, but is never attained
by finite fit .

The maximal negative autocorrelation induced by nontrading is small
for individual securities with small mean returns and large return variances .

_ ~	Ι~~Ι	
Ι2

min Corr [Ri , R~+ι ] _

	

(4.2 .14)
{ρ,)

	

1 -}- ~ ~~ίΙ

1
ρ~

	

1+~Ι~=1'

(4.2.12)

(4.2.15)
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For secuńties with small mean returns the nontrading probability required
to attain (4 .2.14) must be very close to unity. Corollary 4 .2.1 also implies that
nontrading induced autocorrelation is magnified by taking longer sampling
intervals since under the hypothesized virtual returns process doubling the
holding period doubles ~; but only multiplies ~i by a factor of ~ . There-
fore more extreme negative autocorrelations are feasible for longer-horizon
individual returns. However, this is not of direct empirical relevance since
the effects of time aggregation have been ignored . To see how, observe that
the nontrading process of Definition 4 .2.1 is not independent of the sam-
pling interval but changes in a nonlinear fashion . For example, if a "period"
is taken to be one week, the possibility of daily nontrading and all its con-
comitant effects on weekly observed returns is eliminated by assumption .
A proper comparison of observed returns across distinct sampling intervals
must allow for nontrading at the finest time increment, after which the im-
plications for coarser-sampled returns may be developed . We shall postpone
further discussion until Section 4 .3 where we address this and other issues
of time aggregation explicitly .

Other important empirical implications of our nontrading model are
captured by (4 .2.12) of Proposition 4 .2 .1 . For example, the sign of the cross-
autocovariances is determined by the sign of ß=ßj . Also, the expression is
not symmetric with respect to i and j: if security i always trades so that
pi = 0, there is still spurious cross-autocovariance between Rr and R~~+n ,
whereas this cross-autocovariance vanishes ifp; = 0 irrespective of the value
of pE . The intuition for this result is simple : when security j exhibits non-
trading the returns to a constantly trading secuńty i can forecast j due to
the common factor ~ r present in both returns . That j exhibits nontrading
implies that future observed returns R~~+n will be a weighted average of all
past virtual returns Rjι+n_k (with the X ~+n (k)'s as random weights) , of which
one term will be the current virtual return Rat . Since the contemporaneous
virtual returns Rü and Rig are correlated (because of the common factor),
~t can forecast R~~+n . The reverse however is not true. If security i exhibits
nontrading but security j does not (so that p> = 0) , the covariance between
R° and Rjr+n is clearly zero since Ri is a weighted average of past virtual
returns Ri r_k which is independent of Rig+n by assumption . $

The asymmetry of (4.2.12) yields an empirically testable restriction on
the cross-autocovariances of returns . Since the only source of asymmetry
in (4.2.12) is the probability of nontrading, information regarding these

s~ alternative interpretation of this asymmetry may be found in the causality literature,
in which R~ is said to "cause" R~ if the return to i predicts the return to j. In the above
example, security i "causes" secuńty j when j is subject to nontrading but i is not. Since our
nontrading process may be viewed as a form of measurement error, the fact that the returns
to one security may be "exogenous" with respect to the returns of another has been proposed
under a different guise in Sims (1974, 1977) .
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probabilities may be extracted from sample moments . Specifically, denote
by Rt° the vector [Rig ~z°ι ' ' ' RNτ]~ of observed returns of the N securities and
define the autocovariance matrix ~ n as

~n = ~ [(R~° - ~)~R~+n - μ, )~] ,

	

μ -_ Ε[Ri° ] .

	

(4.2.17)

Denoting the (i, j)th element of ~ n by ~1;(n), we have by definition

1-
Yi;fin) _ (

	p=	
- p' ßt ß; ~~ p~ .

	

(4.2.18)
1-ptp;

If the nontrading probabilities pi differ across securities, 1' n is asymmetric .
From (4.2.18) it is evident that :

Y~;(n)

	

Γp~
l n

v;~(n)

	

\p=l
(4.2.19)

Therefore relatwe nontrading probabilities may be estimated directly using
sample autocovariances ~ n . To derive estimates of the probabilities pi them-
selves we need only estimate one such probability, say ~l , and the remaining
probabilities may be obtained from the ratios (4 .2.19) . A consistent estima-
tor of ~ is readily constructed with sample means and autocovariances via
(4.2.12) .

4.2.2 Implications for Portfolio Returns

Suppose we group securities by their nontrading probabilities and form
equally-weighted portfolios based on this grouping so that portfolio A con-
tains Na securities with identical nontrading probability ~°, and similarly for
portfolio B . Denote by Ra t and Rb~ the observed time-t returns on these two
portfolios respectively, thus :

1
Rκ° τ =_ N Σ,R~,

κ αΕκ

κ = α, b,

	

(4.2.20)

where IK is the set of indices of securities in portfolio ~ . Since individual
returns are assumed to be continuously-compounded, R~~~ is the return to a
portfolio whose value is calculated as an unweighted geometric average of
the included securities' prices . 9 The time series properties of (4 .2.20) may

9The expected return of such a portfolio will be lower than that of an equally-weighted
portfolio whose returns are calculated as the ańthmetic means of the simple returns of the
included secuńties . This issue is examined in greater detail by Modest and Sundaresan (1983) )
and Eytan and Harpaz (1986) ) in the context of the Value Line Index which until recently was
an unweighted geometric average .
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be derived from a simple asymptotic approximation that exploits the cross-
sectional independence of the disturbances pi t . Since similar asymptotic

arguments can be found in the Arbitrage Pricing Theory literature, our
assumption of independence may be relaxed to the same extent that it is
relaxed in studies of the APΤ in which portfolios are required to be "well-
diversified ." 10 In such cases, we have :

Prof~osition 4.2.2 . As the number of securities in portfolios A and B (denoted by N~
and Nb, respectively) increases without bound, the following equalities obtain almost

surely :

where

φ

Rκο α=ς 1-tκ + (1 - ρκ)ιΒκ Σρκ ~1-k>
k=0

α
μα + F'αΑ1,

(4.2.21)

/-tκ =- 1 Σ μ~,

	

βκ = 1 Σ F'i,

	

(4.2.22)
Νκ

iE ~

	

Νκ iEI

for ~ = a, b. The first and second moments of the portfolios' returns are given by

E[R,°~~ a h~ = E[Rr~t~,

	

(4.2.23)

Var[Rκ° t ] a ,BK (1 + pκ ) σλ ,

	

(4.2.24)

Cov[R~° ι+ Rκ°ι+π~ a ßκ (1 + pK ) pκ σλ °

	

n > 0,

	

(4.2.25)
p~

Corr[R,° i , R,~°ι+n] a pK,

	

n > 0,

	

(4.2.26)

COV[R° j~°

	

a (1-ra)( 1 - pb) μ ςε 2 ,ηn
ate bt +n~ -

	

1 _ ,~a ,~b

	

~a %'b ~~ Yb +

	

(4.2.27)

where the symbol "a " indicates that the equali

Y

ty

t'

obtains only asymptotically .

From (4.2.23) we see that observed portfolio returns have the same
mean as that of its virtual returns . In contrast to observed individual returns,

Rat has a lower variance asymptotically than that of its virtual counterpart

Rat since :

Rat =
1 Σ Rίι = Ν-α -Ι- ßaAt + Ν Σ ~it>

	

(4.2 .28)
Να iEI

	

α iEI

(4.2.29)

~ o See , for example , Chamberlain ( 1983 ) ) , Chamberlain and Rothschild (1983) ) , and Wang
(1988 ) ) . The essence of these weaker conditions is simply to allow a Law of Large Numbers to
be applied to the average of the disturbances, so that "idiosyncratic risk" vanishes almost surely
as the cross-section grows .



4.3. Time Aggregation

	

95

where (4.2.29) follows from the Law of Large Numbers applied to the last

term in (4.2.28) . Thus Var[Ra~]
a

,Ba~~, which is greater than or equal to
Var[Rat ] .

Since the nontrading-induced autocorrelation (4 .2 .26) declines geo-
metrically, observed portfolio returns follow a first-order autoregressive pro-

cess with autoregressive coefficient equal to the nontrading probability. In
contrast to expression (4 .2.12) for individual securities, the autocorrelations
of observed portfolio returns do not depend explicitly on the expected re-
turn of the portfolio, yielding a much simpler estimator for pK : the nth root
of the nth order autocorrelation coefficient. Therefore, we may easily esti-
mate all nontrading probabilities by using only the sample first-order own-
autocorrelation coefficients for the portfolio returns . Comparing (4.2 .27)
to (4.2.12) shows that the cross-autocovariance between observed portfo-
lio returns takes the same form as that of observed individual returns. If
there are differences across portfolios in the nontrading probabilities, the
autocovariance matrix for observed portfolio returns will be asymmetric .
This may give rise to the types of lead-lag relations empirically documented
by Lo and MacKinlay (1990b) ) in size-sorted portfolios . Ratios of the cross-
autocovariances may be formed to estimate relative nontrading probabilities
for portfolios since

Cov[R° , R° ]

	

n
	at ht+n

	

a

	

pb

COV[Rb1, Rat+n]

	

Cpa

Moreover, for purposes of specification testing these ratios give rise to many
"over-identifying" restrictions since

~a~,(n)~~~~2(n) Y~2~~(n) . . . ~~,-~~,(n) Y~,~(n) -

Cpb/n,

	

(4.2.31)
Y~,~(n) ~~~,~, (n) Y~s~2(n) . . . ~~,~,-~ (n) Yb~,(n)

	

pa

for any arbitrary sequence of distinct indices ~i, ~2, . . . , ~„ a ~ b, r < N~,
where N~ is the number of distinct portfolios and ~K ;K, (n) - Cον[RK° t , R,°,t+n ] .

Therefore, although there are Np distinct autocovar~ances in ~ n, the re-
strictions implied by the nontrading process allow only Np(N~ + 1)/2 of the
autocovariances to be arbitrary .

4.3 Time Aggregation

The discrete-time framework we have so far adopted does not require the
specification of the calendar length of a "period." This generality is more
apparent than real since any empirical implementation of Propositions 4 .2 .1

and 4.2.2 must either implicitly or explicitly define a period to be a particu-
lar fixed calendar time interval . Once the calendar time interval has been

(4.2.30)
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chosen, the stochastic behavior of coarser-sampled data is restricted by the
parameters of the most-finely-sampled process. For example, if the length
of a period is taken to be one day then the moments of observed monthly
returns may be expressed as functions of the parameters of the daily ob-
served returns process . We derive such restrictions in this section . Towards
this goal we require the following definition :

Definition 4.3.1. Denote by RT (q) the observed return of security i at time ~ where

one unit of~ time is equivalent to q units of t time, thus :

where ~_ __ ~~/~~ .

Although expected returns time-aggregate linearly (4.3.3) shows that
variances do not . As a result of the negative serial correlation in Rt, the
variance of a sum of these will be less than the sum of the variances . Time
aggregation does not affect the sign of the autocorrelations in (4.3 .5), al-
though their magnitudes do decline with the aggregation value q . As in

τq

Rτ(q) _-

	

Σ, Rt.

	

(4.3.1)
t=(τ-1)q+1

The change of time scale implicit in (4.3 .1) captures the essence of time
aggregation . We then have the following result :

Proposition 4.3.1. Under the assumptions of Definitions 4.2.1-4.2.3, the observed

returns processes {RT(q)} (i = l, . . . , N) are covariance-stationary with the follow-

ing first and second moments :

ΕίR~(q)l = q~~,

	

(4.3.2)

2 1 - 7

	

(4.3.3)VarfR~ (q)l = qσ?+pi(-
ρτρ~ ) μ2

\ 2
Cον[Ri ίq), Rr+η (q)] _ - ~2ρ~η

ι>4+i ~	1_ ρ~ /

	

η > 0,

	

(4.3.4)

Corr [R° ( ), R° (4)] _ -
	~2(1	

ρρ)2ρ`

g-4+i

	

(

	

)ΖΤ 4

	

tτ+η

	

η > 0,

	

4.3 .5
q(1 - ρ~) 2 + 2ρ~(1 - ρ2)ξ2 ,

(1 ρα)(1 ρ~)

	

2 (η-ι)9+ι
C1 -ρ~ Ι 2 ,Cov [R~(q), R~~+n(q)] -

	

1 - ρ~ρ1

	

ßi
β~ σλ ρ~

	

1 - ρ~

i ~ j, η > 0,

	

(4.3.6)
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Figure 4.1 . First-order autocorrelation of temporally aggregated observed individual and
portfolio returns as a function of the per period nontrading probability p, where q is the
aggregation value and ~ _ ~1~ .

Proposition 4.2.1, the autocorrelation of time-aggregated returns is a non-
positive continuous function of pi on [0, 1) which is zero at pi = 0 and
approaches zero as p= approaches unity, hence it attains a minimum . To
explore the behavior of the first-order autocorrelation, we plot it as a func-
tion of pi in Figure 4 .1 for a variety of values of q and ~ . As a guide to an
empirically plausible range ofvalues for ~, consider that the ratio of the sam-
ple mean to the sample standard deviation for daily, weekly, and monthly
equally-weighted stock returns indexes are 0 .09, 0 .16, and 0.21 respectively
for the sample period from 1962 to 1987 . 11 The values of q are chosen
to be 5, 22, 66, and 244 to correspond to weekly, monthly, quarterly, and
annual returns since q = 1 is taken to be one day. Figure 4.1a plots the
first-order autocorrelation pl (p) for the four values of q with ~ = 0 .09. The
curve marked "q = 5" shows that the weekly first-order autocorrelation in-
duced by nontrading never exceeds -5 percent and only attains that value

~~These are obtained from Lo and MacKinlay (19ßßb, Tables la, b, c) .
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with a daily nontrading probability in excess of 90 percent. Although the
autocorrelation of coarser-sampled returns such as monthly or quarterly
have more extreme minima, they are attained only at higher nontrading
probabilities . Also, time aggregation need not always yield a more negative
autocorrelation as is apparent from the portion of the graphs to the left o~
say, p - 0.80; in that region, an increase in the aggregation value q leads
to an autocorrelation closer to zero . Indeed as q increases without bound
the autocorrelation (4.3 .5) approaches zero for fixed pi , hence nontrading
has little impact on longer-horizon returns . The effects of increasing ~ are
traced out in Figures 4 .1b and c . Even if we assume ~ = 0.21 for daily data,
a most extreme value, the nontrading-induced autocorrelation in weekly
returns is at most -8 percent and requires a daily nontrading probability
of over 90 percent. From (4.2.8) we see that when pt = 0.90 the average
duration of nontrading is 9 days! Since no security listed on the NewYork or
American Stock Exchanges is inactive for two weeks (unless it has been de-
listed), we infer from Figure 4.1 that the impact of nontrading for individual
short-horizon stock returns is negligible .

To see the effects of time aggregation on observed portfolio returns, we
define the following :

Definition 4.3 .2. Denote by R~r (q) the observed return ofportfolio A at time ~ where
one unit of ~ time is equivalent to q units ~f t time, thus :

~q

1{~r (q) _-

	

~ R0.E ,

	

(4.3.7)
~=(~-1)g+1

where Ra t is given by (4.2.20).

Applying the asymptotic approximation of Proposition 4 .2.2 then Melds :

Proposition 4.3.2. Under the assumptions of Definitions 4 .2.1-4.2.3, the observed
portfolio returns processes {R~r (q)} and {Rb~(q)} are covariance-stationary with the
following first and second moments as NQ and Nb increase without bound :

E[~°τ (q)] a Ql-~κ,

		

(4.3.8)

_ 4
VarLRκ°r (q)l a ~q - 2pK 1 pK ~ βK σλ ,

	

(4.3.9)

q 2

Cov [RK°~ (q) , R,°τ+n(q)] a [ 1 + pK ] [ 1 _ pK ]
pK 4-4+1 ~gK σλ ,

	

(4.3.10)

n>0,

	(	p~) 2p~4	
9+'

Corr [RK°~(q) , R,°r+n(q)] a

	

1 ,η		n > 0,

	

(4.3.11)
q(1 - Y~) - 2pß( 1 - p~)~
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Cov ~R~~ (q), Reτ+η(4)]

[q _

ρα(1- ρ~)(1- ρδ)2	
+ρδ(1-
	 ρb)(1- ρα)2 Ι θαι~α~,2

(1 - ρα)(1 - ρδ)

	

~ -ραρδ

for η = 0,

2
- ρα)(1- ρδ) ~ 1- ρb~

ρb
4-9+ι βα βδ σλ

1- ραρδ

	

1- ρδ
for n > 0,

fore = a, b, q > 1, and arbitrary~ortfolios a, b, and time .

Equation (4 .3 .11) shows that time aggregation also affects the autocor-
relation of observed portfolio returns in a highly nonlinear fashion . In
contrast to the autocorrelation for time-aggregated individual securities,
(4.3.11) approaches unity for any fixed q as ~~ approaches unity, hence the
maximal autocorrelation is 1 .0 . 12 To investigate the behavior of the port-
folio autocorrelation we plot it as a function of the portfolio nontrading
probability ~ in Figure 4.1d for q = 5, 22, 66, and 55 . Besides differing in
sign, portfolio and individual autocorrelations also differ in absolute mag-
nitude, the former being much larger than the latter for a given nontrading
probability. If the nontrading phenomenon is extant, it will be most evident
~n portfolio returns . Also, portfolio autocorrelations are monotonically de-
creasing in q so that time aggregation always decreases nontrading induced
seńal dependence in portfolio returns . This implies that we are most likely
to find evidence of nontrading in short-horizon returns . We exploit both
these implications in Section 4 .4 .

4.4 An Empirical Analysis of Nontrading

Before consideńng the empirical evidence for nontrading effects we sum-
marize the qualitative implications of the previous sections' propositions
and corollaries . Although virtually all of these implications are consistent
with earlier models of nonsynchronous trading, the sharp comparative static
results are unique to our framework . The presence of nonsynchronous
trading :

1 . Does not affect the mean of either individual or portfolio returns .
2. Increases the variance of individual security returns (with nonzero

mean) . The smaller the mean, the smaller is the increase in the variance
of observed returns .

~ 2 Muthuswam~ (1988)) reports a maximal portfolio autocorrelation of only 50 percent
because of his assumption that each stock trades at least once every T periods, where T is some
fixed number.

(4.3.12)
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3 . Decreases the variance of observed portfolio returns when portfolios
are well diversified and consist of securities with common nontrading
probability.

4. Induces geometrically declining negative serial correlation in individ-
ual security returns (with nonzero mean) . The smaller the mean (in
absolute value), the closer the autocorrelation is to zero .

5. Induces geometrically declining positive serial correlation in observed
portfolio returns when portfolios are well-diversified and consist of se-
curities with a common nontrading probability, yielding an AR(1) for
the observed returns process .

6. Induces geometrically declining cross-autocorrelation between observed
returns of securities i and j which is of the same sign as ßißß . This
cross-autocorrelation is asymmetric : the covariance of current observed
returns to i with future observed returns to j is generally not the same as
the covariance of current observed returns to j with future observed re-
turns to i . This asymmetry is due solely to the assumption that different
securities have different probabilities of nontrading .

7. Induces geometrically declining positive cross-autocorrelation between
observed returns of portfolios A and B when portfolios are well-diversi-
fied and consist of securities with common nontrading probabilities .
This cross-autocorrelation is also asymmetric and is due solely to the
assumption that securities in different portfolios have different proba-
bilities of nontrading .

8. Induces positive serial dependence in an equally-weighted index if the
betas of the securities are generally of the same sign, and if individual
returns have small means .

9. And time aggregation increases the maximal nontrading induced neg-
ative autocorrelation in observed individual security returns, but this
maximal negative autocorrelation is attained at nontrading probabili-
ties increasingly closer to unity as the degree of aggregation increases .

10. And time aggregation decreases the nontrading induced autocorrela-
tion in observed portfolio returns for all nontrading probabilities .

Since the effects of nonsynchronous trading are more apparent in se-
curities grouped by nontrading probabilities than in individual stocks, our
empirical application uses the returns of twenty size-sorted portfolios for
daily, weekly, and monthly data from 1962 to 1987 . We use size to group
securities because the relative thinness of the market for any given stock
has long been known to be highly correlated with the stock's total market
value, hence stocks with similar market values are likely to have similar non-
trading probabilities . 13 We choose to form twenty portfolios to maximize

~ 3 This is confirmed by the entries of Table 4 .3's second column and by Foerster and Keim
(1989)) .
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the homogeneity of nontrading probabilities within each portfolio while
still maintaining reasonable diversification so that the asymptotic approxi-
mations of Proposition 4.2.2 might still obtain .14 In Section 4.4.1 we derive
estimates of daily nontrading probabilities using daily, weekly, and monthly
autocorrelations, and in Section 4 .4.2 we consider the impact of nontrading
on the autocorrelation of the equally-weighted market index .

4.4.1 Daily NontradingProbabilities Implicit in Autocorrelations

Table 4.1 reports first-order autocorrelation matrices ~l for the vector of five
of the twenty size-sorted portfolio returns using daily, weekly, and monthly
data taken from the Center for Research in Security Prices (CRSP) database .
Portfolio 1 contains stocks with the smallest market values and portfolio 20
contains those with the largest .15 From casual inspection it is apparent that
these autocorrelation matrices are not symmetric . The second column of
matrices are the autocorrelation matrices minus their transposes and it is
evident that elements below the diagonal dominate those above it . This
confirms the lead-lag pattern reported in Lo and MacKinlay (1990b) ) . That
the returns of large stocks tend to lead those of smaller stocks does sup-
port the hypothesis that nonsynchronous trading is a source of correlation .
However, the magnitudes of the autocorrelations for weekly and monthly
returns imply an implausible level of nontrading . This is most evident in
Table 4.2, which reports estimates of daily nontrading probabilities implicit
in the weekly and monthly own-autocorrelations of Table 4 .1 . For example,
using (4.3.11) of Proposition 4 .3.2 the daily nontrading probability implied
by an estimated weekly autocorrelation of 46 percent for portfolio 1 is es-
timated to be 77.9 percent . l s Using (4.2 .8) we estimate the average time
between trades to be 3 .5 days! The corresponding daily nontrading proba-
bility is 86 .2 percent using monthly returns implying an average nontrading
duration of 6.2 days .

14The returns to these portfolios are continuously-compounded returns of indwidual simple
returns arithmetically averaged. We have repeated the correlation analysis for continuously-
compounded returns of portfolios whose values are calculated as unweighted geometric av-
erages of included securities' prices . The results for these portfolio returns are practically
identical to those for the continuouslytompounded returns of equally-weighted porüolios .

~SWe report only a subset of five portfolios for the sake of brevity ; the complete set of
autocorrelations may be obtained from the authors on request.

1 sStandard errors for autocorrelation-based probability and nontrading duration estimates
are obtained by applying the "delta" method to (4 .2 .8) and (4 .3 .11) using heteroskedasticity-
and autocorrelation-consistent standard errors for daily, weekly, and monthly first-order auto-
correlation coefficients . These latter standard errors are computed by regressing returns on
a constant and lagged returns, and using Newey and West's (1987) procedure to calculate
heteroskedasticity- and autocorrelation consistent standard errors for the slope coefficient
(which is simply the first-order autocorrelation coefficient of returns) .
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Table 4.1 . Sample first-order autocorrelation matrix ~i for the 5 x 1 subvector

~R~ ~~ Riο R15 ~~o~~ of observed returns to twenty equally-weighted size-sorted portfolios using
daily, weekly, and monthly stock returns data from the CRSP files for the period 31 December
1962 to 31 December 1987, where portfolios are rebalanced monthly . Only securities with ~om-
plete daily return histories within each month were included in the daily and monthly returns
calculations . Ri is the return to the portfolio containing securities with the smallest market val-
ues and ~o is the return to the portfolio of securities with the largest . There are approximately
equal numbers of securities in each portfolio . The entry in the ith row and jth column is the
correlation between R,~ and R~~+i . To gauge the degree of asymmetry in these autocorrelation

matrices, the difference ~ i - ~i is also reported.
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For comparison Table 4 .2 also reports estimates of the nontrading prob-
abilit~es using daily data and using trade information from the CRSP files . In
the absence of time aggregation, own-autocorrelations of portfolio returns
are consistent estimators of nontrading probabilities, hence the entries in
the column of Table 4.2 labelled "pK (q = 1)" are simply taken from the di-
agonal of the autocovariance matrix in Table 4.1. For the smaller securities,
the point estimates field plausible nontrading durations, but the estimated
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Table 4.2. Estimates of daily nontrading probabilities implicit in 20 weekly and monthly
size-sorted portfolio return auto~orrelations . Entries in the column labelled `p~ " are averages
~f the fraction of securities in portfolio ~ that did not trade on the last trading day of the
month, where the average is computed over month-end trading days in 1963 and from 1973
to 1987 (the trading-status data from 1964 to 1972 were not used due to errors uncovered by
Foerster and Keim (1989))). Entries in the `per (q = 1) "column are the first-order autocorrela-
tion coefficients of daily portfolio returns, which are consistent estimators of daily nontrading
probabilities. Entries in the `p~ (q = 5) " and `per (q = 22) " columns are estimates of daily
nontrading probabilities obtained from first-order weekly and monthly portfolio return auto-
correlation coefficients, using the time aggregation relations ~f Section 3 (q = 5 for weekly
returns and q = 22 for monthly returns since there are 5 and 22 trading days in a week
and a month, respectively) . Entries in columns labelled `É [k] " are estimates of the expected
number of consecutive days without trading implied by the probability estimates in column to
the immediate left. Standard errors are reported in parentheses; all are heteroskedasticity- and
autocorrelation-consistent except for those in the second column .
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durations decline only marginally for larger-size portfolios . A duration of
even only a third of a day is much too large for securities in the second
largest portfolio . More direct evidence is provided in the column labelled
pK , which reports the average fraction of securities in a gwen portfolio that
do not trade during the last trading day of the month . l7 This average is
computed over all month-end trading days in 1963 and from 1973 to 1987.

l ~Th~s information is provided in the CRSP daily files in which the closing price of a security
is reported to be the negative of the average of the bid and ask prices on dais when that security
did not trade . See Foerster and Keim (1989) ) for a more detailed account. Standard errors for
probability estimates based on the fraction of no-trades reported by CRSP are derived under
the assumption of a temporally IID nontrading process {bet } ; the usual binomial approximation
yields Jpκ (1 - per )/NA T as the standard error for the estimate p~, where N~ is the number of
securities in portfolio ~ and T is the number of daily observations with which the nontrading
probability ~K is estimated. For our sample and portfolios, NK T fluctuates about 20,00 (192
daily observations, 105 securities per portfolio on average) .
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The period between 1963 and 1973 is omitted due tó trading-status report-
ing errors uncovered by Foerster and Keim (1989) ) . Comparing the entries
in this column with those in the others shows the limitations of nontrading
as an explanation for the autocorrelations in the data . Nontrading may
be responsible for some of the time series properties of stock returns but
cannot be the only source of autocorrelation .

4.4.2 Nontrading and Index Autocorrelations

Denote by Rmt the observed return in period t to an equal-weighted portfolio
of all N securities . Its autocovariance and autocorrelation are readily shown
to be

ι'Γ η ι

Cov
~Rmt ~ R,°πι+η~ =

Ν2
~

	

(4.4.1)

~'~nl
Corr ~R~z, Rmt+n~ _ ~

	

(4.4.2)
~ ~°~'

where ~° is the contemporaneous covariance matrix of Rt° and ~ is an N x 1-
vector of ones . If the betas of the securities are generally of the same sign and
if the mean returns to each security is small, then Rmr is likely to be positively
autocorrelated . Alternatively, if the cross-autocovariances are positive and
dominate the negative own-autocovariances the equal-weighted index will
exhibit positive serial dependence .

With little loss in generality we let N = 20 and consider the equal-
weighted portfolio of the twenty size-sorted portfolios, which is an approx-
imately equal-weighted portfolio of all securities . Using (4.3.6) of Proposi-
tion 4 .3.1 we may calculate the weekly autocorrelation ofRmt induced by par-
ticular daily nontrading probabilities ~ i and beta coefficients ßi . To do this,
we need to select empirically plausible values for pi and ßi, i = 1, 2, . . . , 20.
This is done in Table 4.3 using four different ways of estimating the oz's and
two different assumptions for the ßi's . The first row corresponds to weekly
autocorrelations computed with the nontrading probabilities obtained from
the fractions of negative share prices reported by CRSP . The first entry, 0 .014,
is the first-order autocorrelation of the weekly equal-weighted index assum-
ing that all twenty portfolio betas are 1 .0, and the second entry, 0 .018, is
computed under the alternative assumption that the betas decline linearly
from ,Bl = 1 .5 for the portfolio of smallest stocks to ß20 = 0 .5 for the
portfolio of the largest . The next three rows report similar autocorrela-
tions implied by nontrading probabilities estimated from daily, weekly, and
monthly autocorrelations using (4.3.11) .

The largest first-order autocorrelation for the weekly equal-weighted
returns index reported in Table 4 .3 is only 7 .5 percent. Using direct esti-
mates of nontrading via negative share prices yields an autocorrelation of
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Table 4.3. Estimates of the first-order autocorrelation ~m of weekly returns of an
equal-weighted portfolio of twenty size-sorted portfolios (which approximates an
equal-weighted portfolio of all securities), using four different estimators of daily
nontrading probabilities : the average fraction of negative share prices reported by
CRSP, and daily nontrading probabilities implied by first-order autocorrelations
of daily, weekly, and monthly returns to an equal-weighted index . Since the index
autocorrelation depends on the betas of the twenty portfolios it is computed for two
sets of betas, one in which all betas are set to 1 .0, and another in which the betas
decline linearly from ~~ = 1 .5 to ßßo = 0 .5 .

ι~m

	

l~m

Estimator of ρ;

	

β1 = 1, β20 = 1)

	

(βι = 1.5, β2ο = 0.5)

Negative Share Price 0.014 0.018
Daily Implied 0.072 0.075
Weekly Implied 0.067 0.074
Monthly Implied

	

0.029

	

0.031

less than 2 percent! These magnitudes are still considerably smaller than the
30 percent autocorrelation reported by Lo and MacKinlay (1988b) ) . Taken
together, the evidence in Sections 4 .4.1 and 4.4.2 provide little support for
nonsynchronous trading as an important source of spurious correlation in
the returns of common stock .

4.5 Extensions and Generalizations

Despite the simplicity of our model of nonsynchronous trading, we hope
to have shown the richness of its implications for observed time series . Al-
though its immediate application is to the behavior of asset returns, the
stochastic model of random censoring may be of more general relevance to
situations involving randomly cumulative measurement errors . Moreover,
this framework may be extended and generalized in many directions with
little difficulty, and we conclude by discussing some of these here . We men-
tion them only in passing since a more complete analysis is beyond the scope
of the present study, but we hope to encourage further research along these
lines .

It is a simple matter to relax the assumption that individual virtual re-
turns are independently and identically distributed by allowing the com-
mon factor to be autocorrelated and the disturbances to be cross-sectionally
correlated. For example, assuming that ~~ is a stationary AR(1) is concep-
tually straightforward although the computations of the Appendix become
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somewhat more involved. This specification wild yield a decomposition of
observed autocorrelations into two components: one due to the common
factor and another due to nontrading . Allowing cross-sectional dependence
in the disturbances also complicates the moment calculations but does not
create any intractab~lities . lg Indeed, generalizations to multiple factors,
time series dependence of the disturbances, and correlation between fac-
tors and disturbances are only limited by the patience and perseverance
of the reader ; the necessary moment calculations are not incalculable, but
merely tedious .

We may also build dependence into the nontrading process itself b~
assuming that the ~i~'s are Markov chains, so that the conditional probabil-
ity of trading tomorrow depends on whether or not a trade occurs today .
Although this specification admits compact and elegant expressions for the
moments of the observed returns process space limitations will not permit a
complete exposition here . However, a brief summary of its implications for
the time series properties of observed returns may suffice : (1) Individual
security returns may be positively autocorrelated, portfolio returns may be
negatively autocorrelated (but these possibilities are unlikely given empiri-
cally relevant parameter values) , (2) it is possible (but unlikely) for autocor-
relation matrices to be symmetric, and (3) spurious index autocorrelation
induced b~ nontrading is higher (lower) when there is positive (negative)
persistence in nontrading. Our initial hope was that property (3) might be
sufficient to explain the magnitude of index autocorrelations in recent stock
market data. However, several calibration experiments indicate the degree
of persistence in nontrading required to yield weekly autocorrelat~ons of 30
percent is empirically implausible .

One final direction for further investigation is the possibility of depen-
dence between the nontrading and virtual returns processes . If virtual re-
turns are taken to be new information then the extent to which traders
exploit this information in determining when (and what) to trade will show
itself as correlation between ~~ and ~~ j . Many strategic considerations are
involved in models of information-based trading, and an empirical anal-
ysis of such issues promises to be as challenging as it is exciting . How-
ever, if it is indeed the case that autocorrelation in returns is induced by
information-based nontrading, in what sense is this autocorrelation spuri-
ous? Our premise is that nontrading ~s a symptom of institutional features
such as lagged adjustments and nonsynchronously reported prices, and our
empirical results show that this is of little practical relevance . But if nonsyn-

tgAs we discussed earlier, some form of cross-sectional weak dependence must be imposed
so that the asymptotic arguments of the portfolio results sill obtain . Of course, such an
ass~~mption mad not always be appropriate as, for example, in the case of companies within the
same industry, whose residual risks we might expect to be positively correlated . Therefore, the
asymptotic approximation will be most accurate fir well-diversified portfolios .
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chronicity is purposeful and informationally motivated then the subsequent
serial dependence in asset returns may well be considered genuine, since
it is the result of economic forces rather than mismeasurement . Although
this is beyond the purview of the current framework, it is nevertheless a
fascinating avenue for future research and may explain several currently
puzzling empirical findings.



Appendix A4
Proof of Propositions

Proof of Proposition 4.2.1

To derive (4 .2.10)-(4 .2 .13) , we require the corresponding moments and co-
moments of the Bernoulli variables Xi~(k) . From Definition 4.2.1 it follows
that

ΕίΧ~ι(k)l = (1- ρί)ρk,

ΕίΧ~(k)l = (1 -ρε)ρk,

(A4.1)

(A4.2)

for arbitrary i, t, and k . To compute E[Xi~(k) X~r+n(l)l , recall from Defini-
tion 4 .2.1 that

Χίι(k)Χίι+ η(L) _ (1 - δiτ )δit-1 . . . δi t_k • (1 - δ~ι+η)δίt+η-ι . . . δίt+η -1 . (Α4.3)

If 1 > n, then ~[Χ2 z(k) Xi~+n(~l = 0 since both ~~ t and 1 - ~;~ are included
in the product (A4.3), hence the product is zero with probability one . If
l < n, it may readily be shown that the expectation reduces to (1 - pß )2 ~k+~

hence we hav

	

t
o

(1 - ρί) 2ρk+1

	

1~ 1 < η,

Ε[Χει(k) Χτι+>~(l)~ =

	

0

	

if 1 > η.

	

(Α4.4)

From Definition 4 .2.2, we have

φ

	

φ
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where the second equality in (A4 .5a) follows from the mutual independence
of Xi~(k) and ~iz ~_ k . This establishes (4.2.10) . To derive (4 .2.11) we first
obtain an expression for the second uncentered moment of R t :

~ίRz 2 l = Ε [Σ Χ~ι(k) Rίι-k •Σ Χύ(Ζ) ~ι-ι

	

(Α4.6α)
k=0

	

1=0

= Σξ[Xi(k)R2_ k ]
k=0

+ 2ΣΣα<[ΕίΧει(k) Χει(1) ~ι_k Rίι -ιl,

φ

(A4.6b)

_ (μ2 + ~2)Σ (1 - pi)pk
k=0

+ 2ΣΣ k<[Ε[Χει~k) Χtι~Ζ)l • Εί~ι-k ~ίι-[l ,

	

(Α4.6ε)

= μ2 + σ? + 2ΣΣk~ [ (1 - ρ~)pi ~μ? + σ2θ(k - ~)~ ,

	

(Α4.6d)

where θ (χ) _ ~ 0 if χ ~ 0,
1 if χ = 0,

φ φ
= μ? + σ2 + 2Σ Σ (1 - ρ~)ρ~ ~μ? + σ2θ(k - ~)~ ,

	

(A4.6e)
k=0 [=k+1

~

	

~

= μ2 + σ? + 2(1 - ρ1)Σ ρk
+ιΣ μ2ρ~

k=0

	

1=0

(A4.6f)

= b~2 + ~2 + 2~2pi

	

(A4.6g)
~-p~

This yields (4 .2.11) since

Var[Ri] = E [R~2] - E2 [R ~] _ ~ 2 + 2μ2 pz

	

(A4.7)
1- p i '

The autocovariance of R~ may be obtained similarly by first calculating the
uncentered moment :

E [~°~ R~+nl = E ~ X~~(k) ~r-~ • ~ X~r+n(L) ~~+n-~

	

(A4.8a)
k=0

	

1=0
~ ~

_ ~ ~ E~x~r(k) Xεt+n(1) ~t-k Rid+n-ιl ,

	

(A4.8b)
k=0 1=0
~ ~

- ~~E[x~t (k)Xi~+n(1)l 'E~~~-kRit+n-~~,

	

(A4.8c)
k=0 [=0
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οο η-1
_ ~Σ(1 _ ρί) 2ρ

k+ίΕ ίRιί-k ~ι+η-ιl ,

	

(A4.8d)
k=0 l=0

0o n-1

- ~~(1 - p=) 2pk+
~~ 2 = X2(1 - p~) .

	

(A4.8e)
k=0 1=0

Note that the upper limit of the 1-summation in (A4 .8d) is finite, which
follows from (A4.4) . Also, (A4.8e) follows from the fact that {R~ r } is an
IID sequence and the only combinations of indices k and 1 that appear in
(A4.8d) are those for which RÍ r_k and Ri g+n_l are not contemporaneous,
hence the expectation of the product in the summands of (A4.8d) reduces
to ~2 in (Á4 .8e) . The autocovariance (4.2.12) then follows since

Cov[Rz>R°t +n~ = E~RáR~+n~ - E~Rt~E~R~t+n~ _ -N~2pi .

	

(A4.9)

The calculation for the cross-autocovariance between Rt and Rat+n differs
only in that the common factor induces contemporaneous cross-sectional
correlation between the virtual returns of securities i and j. Using the fact
that

E~~~-~ R~~+n-l} _ /~τl-~~ + ß~ß~ σλΘ(1- k - n),

	

(Α4.10)

then yields the following :

E[R~t Rat+n l = E C~ Xit(k) R~l-k • ~ X t+n(Z) ~t+n-1

	

(A4.lla)
k=0

	

l=0

~ ~

= Σ Σ ΕίΧίι(k) ~ι+η(Ζ) ~ι-k Rjt+η-1~+

	

(A4.llb)
k=0 1=0

- Σ Σ ΕίΧiι(k)} • ΕίΧjι+η(Ζ)l • ΕίRίι-k~t+η-τl ,

	

(Α4.11ε)
k=0 ί=0

= Σ Σ(1- ρί)ρk(1 - ρ;)ρ;`
k=0 1=0

χ ~μ~μ~ -F β~β~ σλΘ(1- k - η)~ ,

	

(A4.lld)

= Σ Σ(ι - ρ=)pk(1- ρ>>ρ; μ=μ;
k=0 1=0
~ ~

-{- Σ Σ(1 - ρί)ρk(1- ρ~)ρ~ β~,Β~ σλ θ(~ - k - η), (Α4.1 le)
k=0 1=0

= μ~μ; + Σ(1 - ρ~)(1 - ρ;)β~,β; σλ ρkρ;+η ,
k=0

(Α4.11~)
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_ ~ίμ; + (1- pi)(1 - 1'ί>βίβί σλ ρ; Σ(ρ~ρ;) k ,
k=0

(A4.1 lg)

(1- pi>(1- p>>

	

2 n
_ /-~iN~; +

	

βtβ; σλ p; ,

	

(A4.llh)1-pip;
where the cross-sectional independence of the nontrading processes has
been used to derive (A4 .llc) . This Melds (4 .2 .12) since

Cov[Ri,R~~ +η ] = Ε[RrR~i+η ] -Ε[Rr]Ε[R~~+η],

	

(Α4.12α)

(1- pi)( 1 - ρ;)

	

2 η
ι - ρίρ; βίβ; σλ ρ; .

	

(Α4.12~)
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Proof of Proposition 4.2.2

By definition of R~ i , we have

Rαι = Να Σ Rίι = 1 ΣΣ Χίι(k) Rίι-α,

	

(Α4.13α)
ίε ~

	

Να ίΕά k=0

1

	

Χίι(k) Rίτ-k

	

(A4.13b)
φ= Σ Να Σ
φ

	

1

	

Ατ-k
_ ~, - ~, Ι-~i~ι~k) + N Σ; ιΒίΧ~ι~k)

k=0 Να έεά

	

α ίεά

1
+

	

-~, Είι-k Χίι(k)

	

(Α4.13ε)
Να iE

The three terms in (Á4 .13c) may be simplified by verifying that the sum-
mands satisfy the hypotheses of Kolmogorov's strong law of large numbers,
hence :

From Definition 4.2.1 we have

1 ~, l-~iXit(k) - E ~1 Σ, l-~iXiτ(k)~ ~ 0,

	

(Α4.14α)
ΊVα iEά

	

Να ίεά

1 Σ ιβίΧίι(k) - ε ~1 Σ F~ίχίτ(k)
J
~ 0,

	

(A4.14b)
Να ίεά

	

Να ίΕ

Να Σ Είτ-kΧίι(k) - Ε 1Σ Είτ-k~τ(k) ~ 0.

	

(Α4.14ε)
iE~

	

Να iE~

Ε 1 ~, l-~iXit(k) _ ~1 - ρα)ραb~α, /-~α = 1 Σ b~i,

	

(Α4.15α)
Να iE~

	

Να iEα

Ε ~1 Σ ΝίΧίι(k) _ (1 - rα)rάΝα, Να =-
1 Σ Ni,

	

(A4.15b)
Να ίεά

	

Να ίΕά

1
Ε - Σ είτ-αΧίι(k) = 0 .

	

(Α4.15ε)
Να ίεά

Substituting these expressions into (Á4 .13c) then yields (4.2.21) :

φ
Rατ α=ς hα + (1 - ρα)~α Σ ΑΙ-k ρα .

k=0
(Á4.l6)
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To compute the cross-autocovariance between the two portfolio returns, we
use (A4.16) :

Cov[R~c, R6τ+η~

α
(1 - ρα)(1 - ρ6)NaF~bCOV

_ (1 - ρα)( 1 - ρb)ßa~bΣΣ CοV[Αt-k, Αt+η-1~Υαρb+ (A4.17b)
k=0 [=0

( 1 - ρα)(1 - ρb)Να[~bΣΣ ~λ Υα L'b~( Ζ - k - 12),

	

(Α4.1%C)
k=0 1=0

οο οο

_ (1 - ρα)(1 - ρb)I~aNb σλ ρ6 Σ Σ(ραρδ)k ,

	

(Α4.1'%d)
k=0 1=0

CΣ Αε-kΥα+ Σ, t1 τ+η-[ ρs , (Α4.17α)
k=0

	

Ι=0

1 - ραρ6

α (1- ρα)(1- ρ6)ΝαΝ6
σ2 .η η

	

(A4.17e)λ t'b

where the symbol
a

indicates that the equality obtains only asymptotically.

Proofs of Propositions 4 .3.1 and 4.3.2

Since the proofs consist of computations virtually identical to those of Propo-
sitions 4 .2 .1 and 4 .2.2, we leave them to the reader for the sake of brevity .



5
When Are C ontrarian Profits

Due to Stock Market Overreaction?

5.1 Introduction

SINCE ~~~ P~B~.ICATION of Louis Bachelier's thesis Theory of Speculation in
1900, the theoretical and empirical implications of the random walk hy-
pothesis as a model for speculative prices have been subjects of consider-
able interest to financial economists . First developed by Bachelier from
rudimentary economic considerations of "fair games," the random walk has
received broader support from the many early empirical studies confirming
the unpredictability of stock-price changes . t Of course, as Leroy (1973) and
Lucas (1978) have shown, the unforecastability of asset returns is neither a
necessary nor a sufficient condition of economic equilibrium . And, in view
of the empirical evidence in Lo and MacK~nlay (1988b), it is also apparent
that historical stock market prices do not follow random walks .

This fact surprises many economists because the defining property of
the random walk is the uncorrelatedness of its increments, and deviations
from this hypothesis necessarily imply price changes that are forecastable
to some degree. But our surprise must be tempered by the observation
that forecasts of stock returns are still imperfect and may be subject to con-
siderable forecast errors, so that "excess" profit opportunities and market
inefficiencies are not necessarily consequences of forecastab~lity . Never-
theless, several recent studies maintain the possibility of significant profits
and market inefficiencies, even after controlling for risk in one wad or an-
other.

tSee, for example, the papers in Cootner (1964), and Fama (1965,Fama (1970) . Our usage
of the term "random walk" differs slightly from the classical definition of a process with inde-
pendently and identically distributed increments . Since historically the property of primary
economic interest has been the uncorrelatedness of increments, we also consider processes
with uncorrelated but heterogeneously distributed dependent increments to be random walks .
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Some of these studies have attributed this forecastability to what has
come to be known as the "stock market overreaction" hypothesis, the notion
that investors are subject to waves of optimism and pessimism and therefore
create a kind of "momentum" that causes prices to temporarily swing away
from their fundamental values . (See, e .g ., DeBondt and Thaler, 1985, 1987 ;
DeLong, Shleifer, Summers, and Waldmann,1989 ; Lehmann,1988 ; Poterba
and Summers, 1988; and Shefrin and Statman, 1985 .) Although such a
hypothesis does imply predictability, since what goes down must come up
and vice versa, a well-articulated equilibrium theory of overreaction with
sharp empirical implications has yet to be developed .

But common to virtually all existing theories of overreaction is one very
specific empirical implication : Price changes must be negatively autocorre-
lated for some holding period. For example, DeBondt and Thaler (1985)
write: "If stock prices systematically overshoot, then their reversal should be
predictable from past return data alone ." Therefore, the extent to which
the data are consistent with stock market overreaction, broadly defined,
may be distilled into an empirically decidable question : are return reversals
responsible for the predictability in stock returns?

A more specific consequence of overreaction is the profitability of a con-
trarian portfolio strategy, a strategy that exploits negative serial dependence
in asset returns in particular. The defining characteristic of a contraran
strategy is the purchase of securities that have performed poorly in the past
and the sale of securities that have performed we11 . 2 Selling the "winners"
and buying the "losers" will earn positive expected profits in the presence of
negative serial correlation because current losers are likely to become future
winners and current winners are likely to become future losers. Therefore,
one implication of stock market overreaction is positive expected profits
from a contrańan investment rule. It is the apparent profitability of several
contrańan strategies that has led many to conclude that stock markets do
indeed overreact.

In this chapter, we question this reverse implication, namely that the
profitability of contrańan investment strategies necessarily implies stock
market overreaction . As an illustrative example, we construct a simple
return-generating process in which each security's return is serially indepen-
dent and yet will still yield positive expected profits for a portfolio strategy
that buys losers and sells winners .

This counterintuitive result is a consequence of positive cross-autocovari-
ances across securities, from which contraran portfolio strategies benefit .
I~ for example, a high return for security A today implies that security
B's return will probably be high tomorrow, then a contraran investment

2Decisions about how performance is defined and for what length of time generates as
many different kinds of contrańan strategies as there are theońes of overreaction .
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strategy will be profitable even if each security's returns are unforecastable
using past returns of that security alone . To see how, suppose the market
consists of only the two stocks, A and B ; if A's return is higher than the
market today, a contrarian sells it and buys B . But if A and B are positively
cross-autocorrelated, a higher return for A today implies a higher return for
B tomorrow on average, thus the contrarian will have profited from his long
position in B on average . Nowhere is it required that the stock market
overreacts, that is, that individual returns are negatively autocorrelated .
Therefore, the fact that some contrarian strategies have positive expected
profits need not imply stock market overreaction . In fact, for the particular
contrarian strategy we examine, over half of the expected profits are due
to cross effects and not to negative autocorrelation in individual security
returns.

Perhaps the most striking aspect of our empirical findings is that these
cross effects are generally positive in sign and have a pronounced lead-fag
structure : The returns of large-capitalization stocks almost always lead those
of smaller stocks . This result, coupled with the observation that individual se-
curity returns are generally weakly negatively autocorrelated, indicates that
the recently documented positive autocorrelation in weekly returns indexes
is completely attributable to cross effects . This provides important guidance
for theoretical models of equilibrium asset prices attempting to explain pos-
itive index autocorrelation via time-varying conditional expected returns .
Such theories must be capable of generating lead-lag patterns, since it is
the cross-autocorrelations that are the source of positive dependence in
stock returns .

Of course, positive index autocorrelation and lead-lag effects are also a
symptom of the so-called "nonsynchronous trading" or "thin trading" prob-
lem, in which the prices of distinct securities are mistakenly assumed to be
sampled simultaneously. Perhaps the first to show that nonsynchronous sam-
pling of prices induces autocorrelated portfolio returns was Fisher (1966),
hence the nonsynchronous trading problem is also known as the "Fisher
effect."3 Lead-lag effects are also a natural consequence of thin trading,
as the models of Cohen et al . (1986) and Lo and MacI~inlay (1990c) show .
To resolve this issue, we examine the magnitudes of index autocorrelation
and cross-autocorrelations generated by a simple but general model of thin
trading. We find that although some of correlation observed in the data may
be due to this problem, to attribute all of it to thin trading would require
unrealistically thin markets .

Because we focus only on the expected profits of the contrarian invest-
ment rule and not on its risk, our results have implications for stock market

3We refrain from this usage since the more common usage of the "Fisher effect" is the
one-for-one change in nominal interest rates with changes in expected inflation, due to Irving

Fisher.
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efficiency only insofar as they provide restrictions on economic models that
might be consistent with the empirical results . In particular, we do not assert
or deny the existence of "excessive" contrarian profits . Such an issue cannot
be addressed without specifying an economic paradigm within which asset
prices are rationally determined in equilibrium. Nevertheless, we show that
the contrarian investment strategy is still a convenient tool for exploring the
autocorrelation properties of stock returns .

In Section 5 .2 we provide a summary of the autocorrelation properties
of weekly returns, documenting the positive autocorrelation in portfolio
returns and the negative autocorrelations of individual returns . Section 5.3
presents a formal analysis of the expected profits from a specific contrarian
investment strategy under several different return-generating mechanisms
and shows that positive expected profits need not be related to overreaction .
We also develop our model of nonsynchronous trading and calculate the
impact on the time-series properties of the observed data, to be used later in
our empirical analysis . In Section 5 .4, we attempt to quantify empirically the
proportion of contrarian profits that can be attributed to overreaction, and
find that a substantial portion cannot be . We show that a systematic lead-lag
relationship among returns of size-sorted portfolios is an important source
of contrarian profits, and is the solesource of positive index autocorrelation .
Using the nontrading model of Section 5 .3, we also conclude that the lead-
lag patterns cannot be completely attributed to nonsynchronous prices . In
Section 5.5 we provide some discussion of our use of weekly returns in
contrast to the much longer-horizon returns used in previous studies of
stock market overreaction, and we conclude in Section 5 .6.

5.2 A Summary of Recent Findings

In Table 5.1 we report the first four autocorrelations of weekly equal-weighted
and value-weighted returns indexes for the sample period from July 6, 1962,
to December 31, 1987, where the indexes are constructed from the Cen-
ter for Research in Security Prices (CRSP) daily returns files . 4 During this
period, the equal-weighted index has a first-order autocorrelation p t of
approximately 30 percent . Since its heteroskedasticity-consistent standard

4Unless stated otherwise, we take returns to be simple returns and not condnuously-
compounded . The weekly return of each security is computed as the return from Wednesday's
closing price to the following Wednesday's closing price . If the following Wednesday's price
is missing, then Thursday's price (or Tuesday's if Thursday's is also missing) is used . If both
Tuesday's and Thursday's prices are missing, the return for that week is reported as missing ;
this occurs only rarely. To compute weekly returns on size-sorted portfolios, for each week all
stocks with nonmissing returns that week are assigned to portfolios based on which quintile
their market value of equity lies in . The sorting is done only once, using mid-sample equity
values, hence the compositions of the portfolios do not change over time .
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Table 5.1 . Sample statistics for the weekly equal-weighted and value-weighted CRSP Nl'SE-
ANIEX stock returns indexes, for the period from July 6, 1962, to December 31, 1987 and
subper~ods . Heter~skedasticity-consistent standard errors for autocorrelation coefficients are
given in parentheses .

Sam le Mean Std . Dev.
Time Period

	

Size Return of Return (SE)

	

(SÉ)

	

(SÉ)

	

(SÉ)
%x100%x100

Equal-Weighted :
620706-871231 1330 0.359

	

2.277

	

0.296

	

0.116

	

0.081

	

0.045
(0.046)

	

(0.037)

	

(0.034)

	

(0.035)

620706-750403

	

665 0.264

	

2.326

	

0.338

	

0.157

	

0.082

	

0.044
(0.053)

	

(0.048)

	

(0.052)

	

(0.053)

750404-871231

	

665 0.455

	

2.225

	

0.248

	

0.071

	

0.078

	

0.040
(0.076)

	

(0.058)

	

(0.042)

	

(0.045)

halue-Weighted :
620706-871231 1330 0.210

	

2.058

	

0.074

	

0.007

	

0.021

	

-0.005
(0.040)

	

(0.037)

	

(0.036)

	

(0.037)

620706-750403

	

665 0.135

	

1.972

	

0.055

	

0.020

	

0.058 -0.021
(0.058)

	

(0.055)

	

(0.060)

	

(0.058)

750404-871231

	

665 0.285

	

2.139

	

0.091

	

-0.003 -0.014

	

0.007
(0.055)

	

(0.049)

	

(0.042)

	

(0.046)

error is 0.046, this autocorrelation is statistically different from zero at all
conventional significance levels . The subperiod autocorrelations show that
this significance is not an artifact of any particularly influential subsample ;
equal-weighted returns are strongly positively autocorrelated throughout
the sample . Higher-order autocorrelations are also positive although gen-
erally smaller in magnitude, and decay at a somewhat slower rate than the
geometric rate of an autoregressive process of order 1 [AR(1) ] (for example,

pi is 8.8 percent whereas p2 is 11 .6 percent) .
To develop a sense of the economic importance of the autocorrelations,

observe that the R2 of a regression of returns on a constant and its first
lag is the square of the slope coefficient, which is simply the first-order
autocorrelation . Therefore, an autocorrelation of 30 percent implies that
9 percent of weekly return variation is predictable using only the preceding
week's returns. In fact, the autocorrelation coefficients implicit in Lo and
MacK~nlay's (1988) variance ratios are as high as 49 percent for a subsample
of the portfolio of stocks in the smallest-size quintile, implying an R 2 of
about 25 percent .

It may, therefore, come as some surprise that individual returns are gen-
erally weakly negatively autocorrelated . Table 5 .2 shows the cross-sectional
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Table 5.2. Averages of autocorrelation coefficients for weekly returns on individual
securities, for the period fuly 6, 1962, to December 31, 1987 . The statistic ~~ is the
average ofjth-order autocorrelaüon coefficients of returns on individual stocks that have
at least 52 nonmissing returns. The population standard deviation (SD) is gwen in
parentheses. Since the autocorrelation coefficients are not cross-sectionally independent,
the reported standard deváations cannot be used to draw the usual inferences ; they
are presented merely as a measure of cross-sectional variation in the autocorrelation
coefficients.

Sample

	

Number of

	

~~

	

;02

	

ps

	

Pa
Securίties

	

(SD)

	

(SD)

	

(SD)

	

(SD)

All Stocks

	

4786

	

-0.034

	

-0.015

	

-0.003

	

-0.003
(0.084)

	

(0.065)

	

(0.062)

	

(0.061)

Smallest Quintile

	

957

	

-0.079

	

-0.017

	

-0.007

	

-0.004
(0.095)

	

(0.077)

	

(0.068)

	

(0.071)

Central Quintile

	

958

	

-0.027

	

-0.015

	

-0.003

	

-0.000
(0.082)

	

(0.068)

	

(0.067)

	

(0.065)

Largest Quintile

	

957

	

-0.013

	

-0.014

	

-0.002

	

-0.005
(0.054)

	

(0.050)

	

(0.050)

	

(0.047)

average of autocorrelation coefficients across all stocks that have at least
52 nonmissing weekly returns during the sample period . For the entire
cross section of the 4786 such . stocks, the average first-order autocorrelation

coefficient, denoted by pt, is -3 .4 percent with a cross-sectional standard

deviation of 8.4 percent. Therefore, most of the individual first-order au-
tocorrelations fall between -20 percent and 13 percent . This implies that

most R2's of regressions of individual security returns on their return last
week fall between 0 and 4 percent, considerably less than the predictabil-
ity of equal-weighted index returns . Average higher-order autocorrelations
are also negative, though smaller in magnitude . The negativity of autocor-
relations may be an indication of stock market overreaction for individual
stocks, but it is also consistent with the existence of a bid-ask spread . We

discuss this further in Section 5 .3 .
Table 5.2 also shows average autocorrelations within size-sorted quin-

tiles . 5 The negative autocorrelations are stronger in the smallest quintile,
but even the largest quintile has a negative average autocorrelation . Com-
pared to the 30 percent autocorrelation of the equal-weighted index, the
magnitudes of the individual autocorrelations indicated by the means (and
standard deviations) in Table 5 .2 are generally much smaller.

S Securities are allocated to quintiles by sorting only once (using market values of their
sample periods) ; hence, their composition of quintiles does not change over time .
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To conserve space, we omit corresponding tables for daily and monthly
returns, in which similar patterns are observed . Autocorrelations are strongly
positive for index returns (35 .5 and 14 .8 percent pi's for the equal-weighted
daily and monthly indexes, respectively), and weakly negative for individ-
ual securities (-1 .4 and -2.9 percent ~~'s for daily and monthly returns,
respectively) .

The importance of cross-autocorrelations is foreshadowed by the gen-
eral tendency for individual security returns to be negatively autocorrelated
and for portfolio returns, such as those of the equal- and value-weighted
market index, to be positively autocorrelated . To see this, observe that the
first-order autocovariance of an equal-weighted index may be written as the
sum of the first-order own-autocovariances and cross-autocovariances of the
component securities. If the own-autocovariances are generally negative,
and the index autocovariance is positive, then the cross-autocovariances
must be positive. Moreover, the cross-autocovariances must be large, so
large as to exceed the sum of the negative own-autocovariances . Whereas
virtually all contrarian strategies have focused on exploiting the negative
own-autocorrelations of individual securities (see, e.g ., DeBondt and Thaler,
1985, 1987, and Lehmann 1988), primarily attributed to overreaction, we
show below that forecastability across securities is at least as important a
source of contrarian profits both in principle and in fact .

5.3 Analysis of Contrar~an Profitability

To show the relationship between contrarian profits and the cross effects
that are apparent in the data, we examine the expected profits of one
such strategy under various return-generating processes . Consider a col-
lection of N securities and denote by Rt the Nxl vector of their period t
returns [R~ t • • • R,v~]' . For convenience, we maintain the following assump-
tion throughout this section :

(Al) Rt is a jointly covariance-stationary stochastic process with expec-
tation E[Rt ] = I-~ _ [ l~~ l-t2 ''' ~~]' and autocovariance matrices
E[(Ri_ k - ~)(Rt - ~)'] _ ~k where, with no loss of generality, we
take k > 0 since ~k = ~'_k .s

s Assumption (Al) is made for notational simplicity, since joint covariance-stationarity al-
lows us to eliminate time-indexes from population moments such as ~ and ~k ; the qualitative
features of our results will not change under the weaker assumptions of weakly dependent het-
erogeneously distributed vectors Rt . This would merely require replacing expectations with
corresponding probability limits of suitably defined time-averages . The empirical results of
Section 5 .4 are based on these weaker assumptions; interested readers may refer to conditions
1-3 in Appendix A.
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In the spirit of virtually all contrarian investment strategies, consider buying
stocks at time t that were losers at time t - k and selling stocks at time t that
were winners at time t - k, where winning and losing is determined with
respect to the equal-weighted return on the market . More formally, if ~i r(k)
denotes the fraction of the portfolio devoted to security i at time t, let

~i~(1i) _ -(1/N)(Rit-~ - R;πι-k)

	

i = l, . . . , N,

	

(5 .3.1)

where R„tr_k - ~Ni ~~~_k/N is the equal-weighted market index. ? I~ for
example, k = 1, then the portfolio strategy in period t is to short the winners
and buy the losers of the previous period, t - 1 . By construction, ~t(k) _-

[~~~(k) ~2 t (k) • • • ~N~(k)]' is an arbitrage portfolio since the weights sum to
zero. Therefore, the total investment long (or short) at time t is given by
h(k) where

N

1~(k) _- 1 ~ I~~r(k)I •

	

(5.3 .2)
2 ~_~

Since the portfolio weights are proportional to the differences between the
market index and the returns, securities that deviate more positively from
the market at time t - k will have greater negative weight in the time t
portfolio, and vice versa . Such a strategy is designed to take advantage of
stock market overreactions as characterized, for example, by DeBondt and
Thaler (1985) : "(1) Extreme movements in stock prices will be followed by
extreme movements in the opposite direction . (2) The more extreme the
initial price movement, the greater will be the subsequent adjustment ." The
profit ~ i (k) from such a strategy is simply

N
~r(k) _ ~ , ~ir(k)Ri~ .

	

(5.3.3)
i-~

Rearranging Equation (5.3 .3) and taking expectations yields the following :

E[~~(k)] _
~N2~

- Ntr(~~) - N ~,~1-~= - I-~,>z) 2 ,

	

(5.3.4)
~_~

where ~„~ - E[R„t~] _ ~'~/N and tr(•) denotes the trace operator . $ The
first term of (5.3 .4) is simply the kth-order autocovariance of the equal-
weighted market index. The second term is the cross-sectional average of

This is perhaps the simplest portfolio strategy that captures the essence of the contrarian
principle. Lehmann (1990) also considers this strategy, although he employs a more compli-
cated strategy in his empirical analysis in which the portfolio weights (Equation (5 .3 .1)) are
re-normalized each period by a random factor of proportionality, so that the investment is
always $1 long and short. This portfolio strategy is also similar to that of DeBondt and Thaler
(1985, 1987), although in contrast to our use of weekly returns, they consider holding periods
of three years. See Section 5 .5 for further discussion.

$The derivation of (5 .3 .4) is included in Appendix A for completeness . This is the popu-
lation counterpart of Lehmann's (1988) sample moment equation (5) divided by N .
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the kth-order autocovariances of the individual securities, and the third term
is the cross-sectional variance of the mean returns . Since this last term is
independent of the autocovariances ~k and does not vary with k, we define
the profitability index Lk - L(~k ) and the constant ~ 2 (~) as

C'~k~

	

1

	

2

	

1 N

	

2
Lk =-

N2
- N~(~k)

	

~ (N-) = N ~(wi - l-~~~)
t-~

Thus,
E~~i~k)l = Lk - ~2 (I-~) .

	

(5.3.6)

For purposes that will become evident below, we re-write Lk as

where

Hence,
E~~~(k)~ = Ck + Ok - ~2 (~) .

	

(5.3.9)

Written this way, it is apparent that expected profits may be decomposed
into three terms : one ( Ck) depending on only the off-diagonals of the auto-
covariance matrix ~k, the second ( Ok) depending on only the diagonals, and
a third (~~(~)) that is independent of the autocovariances . This allows us
to separate the fraction of expected profits due to the cross-autocovariances
Ck versus the own-autocovariances Ok of returns .

Equation (5.3.9) shows that the profitability of the contrarian strategy
(5.3.1) may be perfectly consistent with a positively autocorrelated mar-
ket index and negatively autocorrelated individual security returns . Pos-
itive cross-autocovariances imply that the term Ck is positive, and nega-
tive autocovariances for individual securities imply that Ok is also positive .
Conversely, the empirical finding that equal-weighted indexes are strongly
positively autocorrelated while individual security returns are weakly neg-
atively autocorrelated implies that there must be significant positive cross-
autocorrelations across securities . To see this, observe that the first-order
autocorrelation of the equal-weighted index Rm~ is simply

Cov~R,n~-~, ~~l _ ~'~i~ _ ~'~~~ - tr(~~) + tr(~ i ) .

	

(5.3 .10)
Var[R,nt ]

	

~'~o~

	

~'~~~

	

~'~o~

The numerator of the second term on the right-hand side of (5 .3.10) is
simply the sum of the first-order autocovariances of individual securities ; if
this is negative, then the first term must be positive in order for the sum to

Lk = Ck + Οα,

	

(5.3.7)

Ν2

	

- ( Ν2 1 )
Ck

	

[ι'Γk ι - tr(Γ k)],

	

0k -

	

tr(Γk) .

	

(5.3.8)

(5 .3 .5)
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be positive . Therefore, the positive autocorrelation~n weekly returns may
be attributed solely to the positive cross-autocorrelations across securities .

The expression for Lk also suggests that stock market overreaction need
not be the reason that contrarian investment strategies are profitable . To
anticipate the examples below, if returns are positively cross-autocorrelated,
then a return-reversal strategy will yield positive profits on average, even if
individual security returns are serially independent! The presence of stock
market overreaction, that is, negatively autocorrelated individual returns,
enhances the profitability of the return-reversal strategy, but it is not re-
quired for such a strategy to earn positive expected returns .

To organize our understanding of the sources and nature of contrarian
profits, we provide five illustrative examples below . Although simplistic,
they provide a useful taxonomy of conditions necessary for the profitability
of the portfolio strategy (5.3 .1) .

5.3.1 The Independently and Identically Distributed Benchmark

Let returns R~ be both cross-sectionally and serially independent. In this
case ~ k = 0 for all nonzero k, hence,

Lk = Ck = ~k = 0,

	

Είπι(k)l = -σ2(μ) ~ 0 .

	

(5 .3 .11)

Although returns are both serially and cross-sectionally unforecastable, the
expected profits are negative as long as there is some cross-sectional varia-
tion in expected returns . In this case, our strategy reduces to shorting the
higher and buying the lower mean return securities, respectively, a losing
proposition even when stock market prices do follow random walks . Since
~2 (~) is generally of small magnitude and does not depend on the auto-
covariance structure of R~, we will focus on Lk and ignore ~ 2 (~) for the
remainder of Section 5.3 .

5.3.2 Stock Market Overreaction and Fads

Almost any operational definition of stock market overreaction implies that
individual security returns are negatively autocorrelated over some holding
period, so that "what goes up must come down," and vice versa . If we denote
by yi~(k) the (i, j)th element of the autocovariance matrix ~k, the overreac-
tion hypothesis implies that the diagonal elements of ~k are negative, that
is, y~i(k) ~ 0, at least for k = 1 when the span of one period corresponds to
a complete cycle of overreaction .9 Since the overreaction hypothesis gen-
erally does not restrict the cross-autocovariances, for simplicity we set them

9See Section 5 .5 for further discussion of the importance of the return horizon .



5.3. Analysis of Contrarian Profitability

	

125

to zero, that is, y~~(k) = 0, i ~ j . Hence, we have

Y~~(k)

	

0

	

0
0

	

Y22(k) "'

	

0
~k =

	

(5.3.12)

~

	

0

	

. . . yNN(k)

The profitability index under these assumptions for Rr is then

- 1N-11
Lk = ~k =

	

N2
tr(~k)

- -lN-ll N
1
\

	

//
~ y~~(k) > 0,

	

(5.3.13)N2 t-i

where the cross-autocovariance term Ck is zero. The positivity of Lk follows
from the negativity of the own-autocovariances, assuming N > 1 . Not sur-
prisingly, if stock markets do overreact, the contrarian investment strategy
is profitable on average .

Another price process for which the return-reversal strategy will yield
positive expected profits is the sum of a random walk and an AR(1), which
has been recently proposed, by Summers (1986) , for example, as a model
of "fads" or "animal spirits ." Specifically, let the dynamics for the log-price
X~~ of each security i be given by

X~ι = Y~~ + Záß

	

(5.3.14)

where
Y~~ = I-ti + Yit-~ + ~~~,

	

(5.3.15)
7fß = l~i7i1-ι + v~~,

	

0 < ~ < 1

and the disturbances {ε~ i } and {v et } are serially, mutually, and cross-sectionally
independent at all nonzero leads and lags . 10 The kth-order autocovariance
for the return vector Rt is then given by the following diagonal matrix :

k-1 1- pl 2

	

k-~ 1- pN

	

2~k = diag ~-p~ 1+
p~

~~l ,	N ~	1+
pN

~ SUN

	

(5.3.16)

and the profitability index follows immediately as

Lk = ~k = - ~
N2

1
~ ir(~k)

ΝΝ-1

	

k-ι 1-ρα σ2 > 0 .= Ν2 ~ ρί (1 +
ρί

ν ;
~=ι

(5.3.17)

~oThis last assumption requires only that ~~t_k is independent of ~j~ for k # o; hence, the
disturbances may be contemporaneously cross-sectionally dependentwithout los of generality.
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Since the own-autocovariances in Equation (5 .3.16) are all negative, this
is a special case of Equation (5 .3.12) and therefore may be interpreted as
an example of stock market overreaction . However, the fact that returns
are negatively autocorrelated at all lags is an artifact of the first-order au-
toregressive process and need not be true for the sum of a random walk
and a general stationary process, a model that has been proposed for both
stock market fads and time-varying expected returns (e .g ., see Fama and
French (1988) and Summers (1986) ) . For example, let the "temporary"
component of Equation (5 .3.14) be given by the following stationaryAR(2)
process :

9

	

(5.3.18)Zii - ~ ZE~ -1

	

~ Zit-`2 ~ vP~ •

It is easily verified that the first difference of Zi t is positively autocorrelated at
lag 1 implying that Ll < 0. Therefore, stock market overreaction necessarily
implies the profitability of the portfolio strategy (5 .3 .1) (in the absence of
cross-autocorrelation), but stock market fads do not .

5.3.3 Trading on White Noise and Lead-Lag Relations

Let the return-generating process for Rl be given by

~~ _ ~~ + ß~~~-~ + ~~~,

	

ß~ > 0,

	

i = 1, . . . , N,

	

(5.3.19)

where ~ j is a serially independent common factor with zero mean and
variance ~~ , and the ~1 t 's are assumed to be both cross-sectionally and serially
independent . These assumptions imply that for each security i, its returns
are white noise (with drift) so that future returns to i are not forecastable
from its past returns. This serial independence is not consistent with either
the spirit or form of the stock market overreaction hypothesis . And yet
it is possible to predict is returns using past returns of security j, where
j < i . This is an artifact of the dependence of the ith security's return on a
lagged common factor, where the lag is determined by the security's index .
Consequently, the return to security 1 leads that of securities 2, 3, etc . ; the
return to security 2 leads that of securities 3, 4, etc . ; and so on. However,
the current return to security 2 provides no information for future returns
to security l, and so on . To see that such a lead-lag relation will induce
positive expected profits for the contrarian strategy (5 .3 .1), observe that
when k < N, the autocovariance matrix ~k has zeros in all entries except
along the kth superdiagonal, for which yet+k = ~~ ß~ ~~+k • Also, observe
that this lead-lag model yields an asymmetric autocovariance matrix ~k . The
profitability index is then

σ 2 Ν-k

Lk = Ck =
Ν2 Σ βε β~+α > 0 .

	

(5.3.20)
τ-ι
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Thίs example highlights the importance of the cross effects-although each
security is individually unpredictable, a contrarian strategy may still profit if
securities are positively cross-correlated at various leads and lags . Less con-
trived return-generating processes will also yield positive expected profits
to contrarian strategies, as long as the cross-autocovariances are sufficiently
large .

5.3.4 Lead-Lag Effects and N~nsynchronous Trading

One possible source of such cross effects is what has come to be known as
the "nonsynchronous trading" or "nontrading" problem, in which the prices
of distinct securities are mistakenly assumed to be sampled simultaneously.
Treating nonsynchronous prices as if they were observed at the same time
can create spurious autocorrelation and cross-autocorrelation, as Fisher
(1966), Scholes and Williams (1977), and Cohen et al . (1986) have demon-
strated. To gauge the importance of nonsynchronous trading for contrarian
profits, we derive the magnitude of the spurious cross-autocorrelations using
the nontrading model of Lo and MacKinlay (1990c),~~

Consider a collection of N securities with unobservable "virtual" continu-
ously compounded returns ~t at time t, where i = 1, . . . , N, and assume
that they are generated by the following stochastic model :

~r = ~~ + ß~~~ + ~~~

	

i = 1, . . . , N

	

(5.3.21)

where ~ i is some zero-mean common factor and ~1 ί is zero-mean idiosyn-
cratic noise that is temporally and cross-sectionally independent at all leads
and lags. Since we wish to focus on nontrading as the sole source of autocor-
relation, we also assume that the common factor ~~ is independently and
identically distributed and is independent of ~L~_k for all i, t, and k .

In each period t there is some chance that security i does not trade,
say with probability pt . If it does not trade, its observed return for period
t is simply 0, although its true or virtual return Ri l is still given by Equa-
tion (5.3.21) . In the next period t ~- 1 there is again some chance that
security i does not trade, also with probability fü . We assume that whether
or not the security traded in period t does not influence the likelihood of its
trading in period t + 1 or any other future period ; hence, our nontrading
mechanism is independent and identically distributed for each security i .~ 2

If security i does trade in period t + 1 and did not trade in period t, we
assume that its observed return R°+~ at t ~-1 is the sum of its virtual returns

~~The empirical relevance of other nontrading effects, such as the negative autocorrelation
of individual returns, is beyond the scope of this study and is explored in depth by Atkinson
et al. (1987) and Lo and MacKinla~ (f990c) .

12 This assumption may be relaxed to allow for state-dependent probabilities, that is, auto-
correlated nontrading (see Lo and MacKinlay (1990c) for further details) .
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~~+~ Rin and virtual returns for all past consecutive periods in which i has
not traded. In fact, the observed return in any period is simply the sum of
its virtual returns for all past consecutive periods in which it did not trade .
This captures the essential feature of nontrading as a source of spurious au-
tocorrelation : News affects those stocks that trade more frequently first and
influences the returns of thinly traded securities with a lag. In this frame-
work, the effect of news is captured by the virtual returns process (5.3.21),
and the lag induced by nonsynchronous trading is therefore built into the
observed returns process Ri .

More formally, the observed returns process may be written as the fol-
lowing weighted average of past virtual returns :

Rt = Σ Χίιίk)Rit_k

	

i = 1, . . . , Ν.
k=0

Ε[ki,ιl = ρί/ (1 - ρί) •

(5.3.22)

Here the (random) weights Xi t(k) are defined as products of no-trade indi-
cators :

Xir(k) _ (1 - ~it)~it_i~~t_2 . . . fit-k

1 with probability (1 - ~i)pk
0 with probability 1 - (1 - ~i)~k

	

(5.3.23)

for k > 0, Xit (0) - 1 - ~it, and where the i t's are independently and
identically distributed Bernoulli random variables that take on the value 1
when security i does not trade at time t, and zero otherwise . The variable
Xi~(k) is also an indicator variable, and takes on the value 1 if security i
trades at time t but not in any of the k previous periods, and takes on the
value 0 otherwise . If security i does not trade at time t, then ~it = 1, which
implies that Xi~(k) = 0 for all k, thus, R ~ = 0 . If i does trade at time t,
then its observed return is equal to the sum of today's virtual return Ri t and
its past kip virtual returns, where the random variable ki t ~s the number of
past consecutive periods that i has not traded. We call this the duration of
nontrading, and it may be expressed as

οο

	

k

ki, ι =- Σ Π δίι-~

	

(5.3.24)
k=1 =1

To develop some intuition for the nontrading probabilities Yi, observe that

(5.3.25)

Ifpi = 2 , then the average duration of nontrading for security i is one period .

However, if ~i = 4, then the average duration of nontrading increases to
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three periods. As expected if the security trades every period so that pi = 0,

the mean (and variance ) of kz,~ is zero .
Further simplification results from grouping securities with common

nontrading probabilities into portfolios . I~ for example, an equal-weighted
portfolio contains securities with common nontrading probability p~, then
the observed return to portfolio ~ may be approximated as

φ
R,~ ι

α
μ κ + (1 - ρκ)F'κ Σ ρκ ~t-k

k=0

(5.3.26)

where the approximation becomes exact as the number of securities in
the portfolio approaches infinity, and where ß~ is the average beta of the

securities in the portfolio .
Now define R~°~ (q) as the observed return of portfolio κ over q periods,

that is, R~°~(4) _ ~ι9~T-ι)q+ι R~°t • We wish to work with time-aggregated

returns R,°~(q) to allow nontrading to take place at intervals finer than the

sampling interval . i s Using Equation ( 5.3.26), we have the following mo-

ments and co-moments of observed portfolio returns : 14

Ε[~°r ](q) Q 4μκ = Ε[R~r(q)]

	

(5.3.2'1)
_ 4

Var[R~°Τ(q)] a ~q - 2ρκ 1 ρΚ ~ β~σλ

	

(5.3.28)

q 2

Cov ~R~°τ_k(q), R~°~(q)~
a ~ 1+ρΚ ~ ~ 1-ρΚ ~ ρκq-q+1βΚσλ k > 0 (5.3.29)

	(1- ρκ) 2ρκ
kq-q+ι

Corr [R°τ_α(4)> R6r(4)]
σ	 η > 0

	

(5.3.30)
4( 1 - Υκ) - 2ρκ( 1 - ρκ)

Cov[Rατ-k(4)+Rbr (q)]
α (1	

1ρα)ρρ6ρ6) [1-ρ6]2ρδq-
q+ιβαβ6σλ

(5.3.31)

Corr[Rατ-k ( q)+ R6r ( q)] - ραδ(k)

α (1- ρα)( 1 - ρ6)

( 1

- ρq12
pb

q-q+11

1 - ραρ6

	

1 - ρ6

-ι
_ q

	

_

χ

	

q-2ρα 1 - ~ q-2ρ6 1 -ρ2

	

(5.3.32)
ρ6

13 So , for example , although we use weekly returns in our empirical analysis below, the
implications of nontrading that we are about to derive still obtain for securities that may not
trade on some days within the week.

14 See Lo and MacKinlay ( 1990c) for the derivations.
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where R~~(q) and Rbr (q) are the observed q-period returns of two arbitrary
portfolios a and b . Using (5.3.29) and (5.3.32), the effects of nontrading
on contrarian profits may be quantified explicitly . A lead-lag structure may
also be deduced from (5.3.32) . To see this, consider the ratio of the cross-
autocorrelation coefficients :

ράδ(k)

	

1 - ρ6

	

1 - ρ6
2

ρb
kq
-4+ι

	

(5 .3.33)
ηδα(k) - ~ ι - ρα ~ 1- ρα ~ ~ ρα

1 αS t'6 ς L'α

which shows that portfolios with higher nontrading probabilities tend to lag
those with lower nontrading probabilities . For example, if pb > ~~ so that
securities in portfolio b trade less frequently than those in portfolio a, then
the correlation between today's return on a and tomorrow's return on b
exceeds the correlation between today's return on b and tomorrow's return
on a .

To check the magnitude of the cross-correlations that can result from
nonsynchronous prices, consider two portfolios a and b with daily non-
trading probabilities pa = .10 and ~ b = .25. Using (5.3.32), with q = 5
for weekly returns and k = 1 for the first-order cross-autocorrelation, yields
Corr[R~~_~(4)> Rb~(q)] _ •066 andCorr[Rb~_ i (q), Ra~(q)] _ .019. Although
there is a pronounced lead-lag effect, the cross-autocorrelations are small .
We shall return to these cross-autocorrelations in our empirical analysis be-
low, where we show that values of .10 and .25 for nontrading probabilities
are considerably larger than the data suggest. Even if we eliminate nontrad-
ing in portfolio a so that Y~ = 0, this yields Corr[R~ r _ i (q), Rb~(q)] _ .070
and Corr[Rb~-~(4)~ Rar (q)] _ •000. Therefore, the magnitude of weekly
cross-autocorrelations cannot be completely attributed to the effects of non-
synchronous trading .

5.3.5 A Positively Dependent Common Factor and the Bid Ask Sρread

A plausible return-generating mechanism consistent with positive index au-
tocorrelation and negative serial dependence in individual returns is to let
each ~~ be the sum of three components : a positively autocorrelated com-
mon factor, idiosyncratic white noise, and a bid-ask spread process . 15 More
formally, let

~~ _ ~~ + ß~ ~~ + ~~~ + ~i z

	

(5 .3.34)

where
Ε[Λt ] = 0,

	

Ε[Λι-αΛτ] _- Υλ(k) > 0

	

(5.3.35)

~ s This is suggested in Lo and MacKinlay (1988b) . Conrad, Kaul, and Nimalendran (1988)
investigate a similar specification .
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Ε[Είι~ = Ε[ι1it~ = 0

	

`ν'i, t

	

(5.3.36)

σ2 ifk=Oandi=j
Ε[ε ίι_kε~ ι ] = ΟΖ otherwise .

	

(5.3.37)

__

	

4 if k 1 and i j

	

5 .3 .38Ε[ηίι kη~ιl

	

(

	

)
0

	

otherwise .

Implicit in Equation (5 .3.38) is Roll's (1984a) model of the bid-ask spread,
in which the first-order autocorrelation of ii i is the negative of one-fourth
the square of the percentage bid-ask spread si, and all higher-order auto-
correlations and all cross-correlations are zero . Such a return-generating
process will yield a positively autocorrelated market index since averaging
the white-noise and bid-ask components will trivialize them, leaving the
common factor ~~. Yet if the bid-ask spread is large enough, it may domi-
nate the common factor for each security, yielding negatively autocorrelated
individual security returns .

The autocovariance matrices for Equation (5 .3.34) are given by

~ι = Υλ(1)ββ~ - 4diag[si, s2, . . . , sn,]

	

(5.3.39)

Γk = γλ(k)β,Β'

	

k > 1

	

(5.3.40)

where ß =- [ß1 ~2 ' ' ' ~N~~ • In contrast to the lead-lag model of Section
5.3.4, the autocovariance matrices for this return-generating process are all
symmetric . This is an impórtant empirical implication that distinguishes
the common factor model from the lead-lag process, and will be exploited
in our empirical appraisal of overreaction .

Denote by ßm the cross-sectional average ~N1 ßi/N. Then the prof-
itability index is given by

Ν

	

_ Ν 2
Ll = - ΥΝ ) Σ (/3i -,em ) 2 +

Ν21 Σ 4

	

(5.3.41)
i=1

	

i=1

Lk = -ΥΝ ) Σ (Νι - ιΒm) 2

	

k > 1 .

	

(5 .3.42)
i=1

Equation (5.3.41) shows that if the bid-ask spreads are large enough and the
cross-sectional variation of the ßk's is small enough, the contrarian strategy
(5.3 .1) may yield positive expected profits when using only one lag (k = 1)
in computing portfolio weights . However, the positivity of the profitability
index is due solely to the negative autocorrelations of individual security
returns induced by the bid-ask spread . Once this effect is removed, for ex-
ample, when portfolio weights are computed using lags 2 or higher, relation
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(5.3.42) shows that the profitability index is of the opposite sign of the index
autocorrelation coefficient ~~(k) . Since y~(k) > 0 by assumption, expected
profits are negative for lags higher than 1 . In view of the empirical results to
be reported in Section 5.4, in which Lk is shown to be positive for k > 1, it
seems unlikely that the return-generating process (5 .3 .34) can account for
the weekly autocorrelation patterns in the data .

5.4 An Emp~rical Appraisal of Overreaction

To see how much of contrarian profits is due to stock market overreaction,
we estimate the expected profits from the return-reversal strategy of Section
5.3 for a sample of CRSP NYSE AMEX securities. Recall that E[~ t(k)] _
C~ ~- Ok - ~ 2(~) where Ck depends only on the cross-autocovariances of
returns and Ok depends only on the own-autocovańances . Table 5.4 shows
estimates of E[~ t(k)], Ck, O~, and ~2 (~) for the 551 stocks that have no
missing weekly returns during the entire sample period from July 6, 1962, to
December 31, 1987 . Estimates are computed for the sample of all stocks and
for three size-sorted quintiles . All size-sorted portfolios are constructed by
sorting only once (using market values of equity at the middle of the sample
period); hence, their composition does not change over time . We develop
the appropriate sampling theory in Appendix A, in which the ~ovariance-
stationarity assumption (Al ) is replaced with weaker assumptions allowing
for serial dependence and heterogeneity .

Consider the last three columns of Table 5.4,which show the magnitudes
of the three terms Ck, Ók, and ~2 (~,) as percentages of expected profits . At
lag 1, half the expected profits from the contrarian strategy are due to
positive cross autocovariances . In the central quintile, about 67 percent of
the expected profits is attributable to these cross-effects . The results at lag
2 are similar: Positive cross-autocovariances account for about 50 percent
of the expected profits, 66 percent for the smallest quintile .

The positive expected profits at lags 2 ańd higher provide direct evi-
dence against the common component/bid-ask spread model of Section
5.3 .5 . If returns contained a positively autocorrelated common factor and
exhibited negative autocorrelation due to "bid-ask bounce," expected prof-
its can be positive only at lag l ; higher lags must exhibit negative expected
profits as Equation (5.3.42) shows. Table 5.4 shows that estimated expected
profits are significantly positive for lags 2 through 4 in all portfolios except
one .

The x-statistics for Ck, Ok , and E[~ t (k)] are asymptotically standard nor-
mal under the null hypothesis that the population values corresponding
to the three estimators are zero . At lag 1, they are almost all significantly
different from zero at the 1 percent level . At higher lags, the own- and



Table 5.3. Analysis of the profitability of the return-reversal strategy applied to weekly returns, for the sample of 551
CRSP NYSE-ΑNIEΧ stocks with nonmissing weekly rnturns from July 6, 1962, to 31 December 1987 (1330 weeks) .
Expected profits is given by E[~ ` (k)] = Ck + Ok - ~2(~), where Ck depends only on cross-autocovarian~es and O k
de~~ends only on own-autocovar~ances . All z-stattsti~s are asymptotically N(0,1) under the null hypothesis that the relevant

population value is zero, and are robust to heteroskedasticity and autocorrehti~n . The average longposition Ir (k) is also
reported, with its sample standard deviation in parentheses underneath . The analysis is conducted for all stocks as well
as for the five size-sorted quintiles; to conserve space, results for the second and fourth quintiles have been omitted .

Portfolio Lag k

	

Cka

	

~ka

	

~2(~)a

	

~[~~~k)la

	

Ir(k)s

	

%-Ck

	

%-Ok

	

%o-σ 2ίμ)
(z-slat)

	

(z-slat)

	

(z-slat)

	

(SDa)

All Stocks

	

1

	

0.841

	

0.862

	

0.009

	

1 .694

	

151 .9

	

49.6

	

50.9

	

-0.5
(4.95)

	

(4.54)

	

(20.81)

	

(31 .0)

Smallest

	

1

	

2.048

	

2.493

	

0.009

	

4.532

	

208.8

	

45.2

	

55.0 -0.2
(6.36)

	

(7.12)

	

(18.81)

	

(47.3)

Central

	

1

	

0.703

	

0.366

	

0.011

	

1 .058

	

138.4

	

66.5

	

34.6

	

-1.0
(4.67)

	

(2.03)

	

(13.84)

	

(32.2)

Largest

	

1

	

0.188

	

0.433

	

0.005

	

0.617

	

117.0

	

30.5

	

70.3

	

-0.8

(1 .18)

	

(2.61)

	

(11 .22)

	

(28.1)

All Stocks

	

2

	

0.253

	

0.298

	

0.009

	

0.542

	

151 .8

	

46.7

	

54.9

	

-1.6
(1 .64)

	

(1 .67)

	

(10.63)

	

(31 .0)

Smallest

	

2

	

0.803

	

0.421

	

0.009

	

1 .216

	

208.8

	

66.1

	

34.7

	

-0.7
(3.29)

	

(1 .49)

	

(8.86)

	

(47.3)

Central

	

2

	

0.184

	

0.308

	

0.011

	

0.481

	

138.3

	

38.3

	

64.0

	

-2.3
(1 .20)

	

(1 .64)

	

(7.70)

	

(32.2)

Largest

	

2

	

-0.053

	

0.366

	

0.005

	

0.308

	

116.9

	

-17.3 118.9 -1 .6

	

~,
(-0.39)

	

(2.28)

	

(5.89)

	

(28.1)

	

`"

(con~nued)



Table 5. 3. (continued)

Portfolio Lag k

	

Cka

	

~ka

	

~2(~)a É[~~(k)]a

	

In(k)a
(z-stat)

	

(z-stat)

	

(z-stat)

	

(SDa)
%-Ck

	

%-Ok

	

%-~2(~)

All Stocks

	

3

	

0.223

	

-0.066

	

0.009

	

0.149

	

151 .7

	

149.9

	

-44.0

	

-5.9

	

~
(1 .60)

	

(-0.39)

	

(3.01)

	

(30.9)

Smallest

	

3

	

0.552

	

0.038

	

0.009

	

0.582

	

208.7

	

94.9

	

6.6

	

-1 .5

	

~
(2.73)

	

(0.14)

	

(3.96)

	

(47.3)

	

y
Central

	

3

	

0.237

	

-0.192

	

0.011

	

0.035

	

138.2

	

677.6 -546.7 -30.9

	

~
(1 .66)

	

(-1 .07)

	

(0.50)

	

(32.1)

	

~

Largest

	

3

	

0.064

	

-0.003

	

0.005

	

0.056

	

116.9

	

114.0

	

-5.3

	

-8.8

	

p

(0 .39)

	

(-0.02)

	

(1.23)

	

(28.1)

	

P~

All Stocks

	

4

	

0.056

	

0.083

	

0.009

	

0.130

	

151.7

	

43.3

	

63.5

	

-6.7
(0 .43)

	

(0.51)

	

(2.40)

	

(30.9)

Smallest

	

4

	

0.305

	

0.159

	

0.009

	

0.455

	

208.7

	

67.0

	

34.9

	

-1.9

	

b

(1 .53)

	

(0.59)

	

(3.27)

	

(47.3)

	

~.0
Central

	

4

	

0.023

	

-0.045

	

0.011

	

-0.033

	

138.2

	

b

	

b

	

n

	

~~
Ó

(0 .18)

	

(-0.26)

	

(-0.44)

	

(32.0)

	

~

Largest

	

4

	

-0.097

	

0.128

	

0.005

	

0.026

	

116.8

	

-374.6

	

493.4 -18.8
(-0.65)

	

(0 .77)

	

(0.52)

	

(28.0)

aMultiplied by 10,000 .
bNot computed when expected profits are negative .

~oA
ό'
.~
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cross-autocovariance terms are generally insignificant. However, estimated
expected profits retains its significance even at lag 4, largely due to the be-

havior of small stocks. The curious fact that É [~ r (k) ] is statistically different

from zero whereas Ck and Ok are not suggests that there is important neg-

ative correlation between the two estimators Ck and Ok.~ s That is, although
they are both noisy estimates, the variance of their sum is less than each of
their variances because they co-vary negatively. Since Ck and Ók are both
functions of second moments and co-moments, significant correlation of
the two estimators implies the importance of fourth co-moments, perhaps
as a result of co-skewness or kurtosis . This is beyond the scope of this chapter,
but bears further investigation .

Table 5.4 also reports the average long (and hence short) positions
generated by the return-reversal strategy over the 1330-week sample period .
For all stocks, the average weekly long-short position is $152 and the average
weekly profit is $1 .69. In contrast, applying the same strategy to a portfolio
of small stocks yields an expected profit of $4 .53 per week, but requires only
$209 long and short each week on average . The ratio of expected profits
to average long investment is 1.1 percent for all stocks, and 2 .2 percent for
stocks in the smallest quintile . Of course, in the absence of market frictions
such comparisons are irrelevant, since an arbitrage portfolio strategy may
be scaled arbitrarily. However, if the size of one's long-short position is con-
strained, as is sometimes the case in practice, then the average investment
figures reported in Table 5 .4 suggest that applying the contrarian strategy
to small firms would be more profitable on average .

Using stocks with continuous listing for over 20 years obviously induces
a survivorship bias that is difficult to evaluate . To reduce thzs bias we have
performed similar analyses for two subsamples: stocks with continuous list-
ing for the first and second halves of the 1330-week sample respectwely . In
both subperiods positive cross effects account for at least 5~ percent of ex-
pected profits at lag 1, and generally more at higher lags . Since the patterns
are virtually identical to those in Table 5 .4, to conserve space we omit these
additional tables .

To develop further intuition for the pattern of these cross effects, we
report in Table 5 .4 cross-autocorrelation matrices Y k for the vector of returns
on the five size-sorted quintiles and the equal-weighted index using the
sample of 551 stocks . Let Zi denote the vector [R~ i R2~ ~~ ~t ~~ ~~] ~, where
R~~ is the return on the equal-weighted portfolio of stocks in the ith quintile,
and ~~ is the return on the equal-weighted portfolio of all stocks . Then
the kth-order autocorrelation matrix of Zt is given by Yk =- D-i~ 2Ε[ίZι-~ -
~)(Z~ - ~)'] = D-~~2 where D = diag[~l , . . . , ~5 , gym] and ~ - E[Z~] . By

~s`~,e have investigated the unlikely possibility that ~ 2 (~) is responsible for this anomaly ; it
is not.
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Table 5.4 . Auiocorrelation matrices of the vector Z,~ _ [R~~ R2~ R3~ R4 ~ R~~ R,n~l' where ~i
is the return on the portfolio of stocks in the ith quintile, i = 1, . . . , 5 (quintile 1 contains the
smallest stocks) and R„~~ is the return on the equal-weighted index, for the sample of 551 stocks
with nonmissing weekly returns fromJuly 6, 1962, to December 31, 1987 (1330 observations) .
Note thatTk = D-i~2E[(Z~_k -μ)(Ζi - ~)']D_ i ~2 whereD = diag[~l , . . . , ~5 , ~~], thus
the (i, j) th element is the correlation between f~~_ k and ~{~~ . Asymptotic standard errors for the
auto~orrelations under an IID null hypothesis are given by 1 /~ = 0.027 .

Υο

R2ι
__ R3ι

R4 ι

Rsι

R1ι

	

R2ι

	

R3ι

	

Rat

	

Rsι

	

Rmι

Rιι

	

~ 1 .000 0.919 0.857 0.830 0.747 0.918
0.919 1 .000 0.943 0.929 0.865 0.976
0.857 0.943 1.000 0.964 0.925 0.979
0.830 0.929 0.964 1 .000 0.946 0.974
0.747 0.865 0.925 0.946 1 .000 0.933

R,,, ι

	

~ 0.918 0.976 0.979 0.974 0.933 1.000

Rιι

	

R2ι

	

Rsι

	

Rhι

	

Rsι

	

R,πι

Rιι-ι

	

0.333 0.244 0.143 0.101 0.020 0.184
R2t _ ι

	

0.334 0.252 0.157 0.122 0.033 0.195
,Ύ,ι _ R~ ι _ ι 0.325 0.265 0.175 0.140 0.051 0.207

R4ι-ι 0.316 0.262 0.177 0.139 0.050 0.204
R, ι _ ι 0.276 0.230 0.154 0.122 0.044 0.178
R,~ι_ι

	

0.333 0.262 0.168 0.130 0.041 0.202

Rιι

	

R2ι

	

R3τ

	

R4ι

	

Rsι

	

R,ηι

Rιι_2

	

0.130 0.087 0.044 0.022

	

0.005 0 .064
R2τ_ 2

	

0.133 0.101 0.058 0.039

	

0.017 0.076
,Ύ,2 _ R~ t_ 2 0.114 0.088 0.046 0.027 0.002 0.061

1~, ι_ 2 0.101 0.085 0.048 0.029 0.008 0.059
R, ι_ 2 0.067 0.055 0.020 0.008 -0.012 0.031
Rmτ _ 2 0.115 0.087 0.045 0.026

	

0.004 0.061

Rιι

	

R2τ

	

R3ι

	

R4ι

	

Rsι

	

R,πτ

Rιι-3

	

0.089 0.047 0.015 0.013 -0.005 0.036
R2ι _ 3

	

0.094 0.066 0.038 0.041

	

0 .018 0.056
,Ý,3 _ R3ι _3 0.096 0.079 0.059 0.061 0.041 0.072

Σ{~ t _3 0.084 0.067 0.047 0.049 0.031 0.059
R5ι_3 0.053 0.044 0.031 0.034 0.015 0.038
Rmι_~ 0.087 0.063 0.038 0.040

	

0.020 0.054

(con~nued)
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Table 5.4. (continued)

Rιι

	

R2ι

	

R3ι

	

R4ι

	

R5ι

	

R,ιιι

Rt ~_ 4 0.050 0.001 -0.014 -0.029 -0.030 -0.002

R2ι-4 0.064 0.023 -0.002 -0.012 -0.020 0.014
Rs ~_4 0.065 0.029 0.006 -0.002 -0.017 0.019
R4 ~ 4 0.072 0.042 0.017 0.005 -0.008 0.029
Σi~~_4 0.048 0.023 0.002 -0.007 -0.022 0.011
R,n1 4 0.062 0.024

	

0.001 -0.010 -0.021

	

0.014

this convention, the (i, j)th element of Yk is the correlation of Rick with Roc .

The estimator Yk is the usual sample autocorrelation matrix . Note that it is
only the upper left 5 x 5 submatrix of Y k that is related to ~k, since the full
matrix Yk also contains autocorrelations between portfolio returns and the
equal-weighted market index R,nc . i ~

An interesting pattern emerges from Table 5 .4: The entries below the

diagonals of ~k are almost always larger than those above the diagonals
(excluding the last row and column, which are the autocovariances between
portfolio returns and the market) . This implies that current returns of
smaller stocks are correlated with past returns of larger stocks, but not vice
versa, a distinct lead-lag relation based on size . For example, the first-order
autocorrelation between last week's return on large stocks (R, c _~) with this
week's return on small stocks (Ric ) is 27.6 percent, whereas the first-order
autocorrelation between last week's return on small stocks (R ic_ i ) with this
week's return on large stocks (R, c ) is only 2.0 percent! Similar patterns
may be seen in the higher-order autocorrelation matrices, although the
magnitudes are smaller since the higher-order cross-autocorrelations decay.

The asymmetry of the 7k matrices implies that the autocovariance matrix

estimators ~ k are also asymmetric . This provides further evidence against
the sum of the positively autocorrelated factor and the bid-ask spread as the
true return-generating process, since Equation (5 .3.34) implies symmetric
autocovariance (and hence autocorrelation) matrices .

Of course, the nontrading model of Section 5 .3.4 also yields an asymmet-
ric autocorrelation matrix . However, it is easy to see that unrealistically high
probabilities of nontrading are required to generate cross-autocorrelations
of the magnitude reported in Table 5 .4. For example, consider the first-
order cross-autocorrelation between R2c-~ (the return of the second-smallest
quintile portfolio) and Ro c (the return of the smallest quintile portfolio)
which is 33.4 percent. Using Equatίon (5 .3.28) and (5 .3.32) with k = 1

17 We include the market return in our autocovariance matrices so that those why wish to
may compute portfolio betas and market volaálities from our tables .
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0.0 0 .1 0 .2

	

0.3 0.4

	

0 .5

	

0.6

ρα
0.7

	

0.8 0.9

	

1.0

Figure 5.1 . Loci of nontrading probability pairs (p Q , pb ) that imply a constant cross-
autocorrelation ~~,,(k), for~aa (k) _ .05, .10, .15, .20, .25, k = 1, q = 5 . If the probabilities
are interpreted as daily probabilities of nontrading then pa b (k) represents the first-order meekly
cross-autocorrelation betmeen this meek's return to portfolio a and next meek's return to portfolio
bmhenq=5andk=l .

and q = 5 days, we may compute the set of daily nontrading probabilities
(p,, pz ) of portfolios 1 and 2, respectively, that yield such a weekly cross-
autocorrelation . For example, the combinations ( .010, .616), ( .100, .622),
(.500, .659), ( .750, .700), and ( .990, .887) all yield a cross-autocorrelation
of 33 .4 percent. But none of these combinations are empirically plausible
nontrading probabilities-the first pair implies an average duration of non-
trading of 1 .6 days for securities in the second smallest quintile, and the
implications of the other pairs are even more extreme! Figure 5 .1 plots
the iso-autocorrelation loci for various levels of cross-autocorrelations, from
which it is apparent that nontrading cannot be the sole source of cross-
autocorrelation in stock market returns . 18

~sMoreover, the implications for nontrading probabilities are even more extreme if we
consider hourly instead of daily nontrading, that is, if we set q = 35 hours (roughly the number
of trading hours in a week) . Also, relaxing the restrictive assumptions of the nontrading model
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Figure 5.2. Cross-autoc~rrelation pa b (k) as a function of p~ and p b, for q = 5, k = 1 .
(a) Front view; (b) rear view.
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Further evidence against nontrading comes from the pattern of cross-
autocorrelations within each column of the first-order autocorrelation ma-
trix Yt . 19 For example, consider the first column of Yt whose first element
is .333 and fifth element is .276. These values show that the correlation
between the returns of portolio a this week and those of portfolio b next
week do not change significantly as portfolio a varies from the smallest firms
to the largest. However, if cross-autocorrelations on the order of 30 percent
are truly due to nontrading effects, Equation (5 .3.32) implies an inverted
U-shaped pattern for the cross-autocorrelation as portfolio a is varied. Thίs

is most easily seen ~n Figure 5.2a and b, in which an inverted U-shape is
obtained by considering the intersection of the cross-autocorrelation sur-
face with a vertical plane parallel to the fiQ axis and perpendicular to the pb
axis, where the intersection occurs in the region where the surface rises to
a level around 30 percent. The resulting curve is the nontrading-induced
cross-autocorrelation for various values of pQ , holding pb fixed at some value .
These figures show that the empirical cross-autocorrelations are simply not
consistent with nontrading, either in pattern or in the implied nontrading
probabilities .

The results in Tables 5 .3 and 5.4 point to the complex patterns of cross
effects among securities as significant sources of positive index autocor-
relation, as well as expected profits for contrarian investment rules . The
presence of these cross effects has important implications, irrespective of
the nature of contrarian profits . For example, if such profits are genuine,
the fact that at least half may be attributed to cross-autocovariances sug-
gests further investigation óf mechanisms by which aggregate shocks to the
economy are transmitted from large capitalization companies to small ones .

5.5 Long Horizons Versus Short Horizons

Since several recent studies have employed longer-horizon returns in ex-
amining contrarian strategies and the predictability of stock returns, we
provide some discussion here of our decision to focus on weekly returns .
Distinguishing between short- and long-return horizons is important, as it
is now well known that weekly fluctuations in stock returns differ in many
ways from movements in three- to five-year returns . Therefore, inferences
concerning the performance of the long-horizon strategies cannot be drawn
directly from results such as ours . Because our analysis of the contrarian
investment strategy (5.3 .1) uses only weekly returns, we have little to say

of Section 5 .3 .4 does not affect the order of magnitude of the above calculations . See Lo and
MacKinlay (1990c) for further details .

19We are grateful to Michael Brennan for suggesting this analysis .
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about the behavior of long-horizon returns . Nevertheless, some suggestive
comparisons are possible .

Statistically, the predictability of short-horizon returns, especially weekly
and monthly, is stronger and more consistent through time . For example,

Blume and Friend (1978) have estimated a time series of cross-sectional
correlation coefficients of returns in adjacent months using monthly NYSE
data from 1926 to 1975, and found that in 422 of the 598 months the sample
correlation was negative . This proportion of negative correlations is con-
siderably higher than expected if returns are unforecastable . But in their
framework, a negative correlation coefficient implies positive expected prof-
its in our Equation (5.3.4) with k = 1 . Jegadeesh (1990) provides further
analysis of monthly data and reaches similar conclusions . The results are
even more striking for weekly stock returns, as we have seen . For exam-
ple, Lo and MacKinlay (1988b) show evidence of strong predictability for
portfolio returns using New York and American Stock Exchange data from
1962 to 1985 . Using the same data, Lehmann (1990) shows that a contrar-

ian strategy similar to (5.3 .1) is almost always profitable .20 Together these
two observations imply the importance of cross-effects, a fact we established
directly in Section 5 .4 .

Evidence regarding the predictability of long-horizon returns is more
mixed. Perhaps the most well-known studies of a contrarian strategy using
long-horizon returns are those of DeBondt and Thaler (1985, 1987) in which
winners are sold and losers are purchased, butwhere the holding period over
which winning and losing is determined is three years . Based on data from
1926 through 1981 they conclude that the market overreacts since the losers
outperform the winners . However, since the difference in performance is
due largely to the January seasonal in small firms, it seems inappropriate to
attribute this to long-run overreaction . 2 ~

Fama and French (1988) and Poterba and Summers (1988) have also
examined the predictability of long-horizon portfolio returns and find nega-
tive serial correlation, a result consistent with those of DeBondt and Thaler.
However, this negative serial dependence is quite sensitive to the sample
period employed, and may be largely due to the first 10 years of the 1926
to 1987 sample (see Kim, Nelson, and Startz, 1991) . Furthermore, the

L 1Since such profits are sensitive to the size of the transactions costs (for some cases a one-
way transactions cost of 0 .40 percent is sufficient to render them positive half the time and
negative the other half), the importance of Lehmann's findings hinges on the relevant costs
of turning over securities frequently. The fact that our Table ,5 .4 shows the smallest firms to
be the most profitable on average (as measured b~ the ratio of expected profits to the dollar
amount long) may indicate that a round-trip transaction cost of 0 .80 percent is low. In addition
to the bid-ask spread, which is generally $0 .125 or larger and will be a larger percentage of
the price for smaller stocks, the price effect of trades on these relatively thinly traded securities
may become significant.

2 ~See Zarowin (1990) for further discussion .
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statistical inference on which the long-horizon predictability is based has
been questioned by Richardson (1993), who shows that properly adjusting
for the fact that multiple time horizons (and test statistics) are considered
simultaneously yields serial correlation estimates that are statistically indis-
tinguishable from zero .

These considerations point to short-horizon returns as the more imme-
diate source from which evidence of predictability and stock market over-
reaction might be culled . This is not to say that a careful investigation of
returns over longer time spans will be uninformative . Indeed, it may be
only at these lower frequencies that the effect of economic factors, such as
the business cycle, is detectable. Moreover, to the extent that transaction
costs are greater for strategies exploiting short-horizon predictability, long-
horizon predictability may be a more genuine form of unexploited profit
opportunity.

5.6 Conclusion

Traditional tests of the random walk hypothesis for stock market prices have
generally focused on the returns either to individual securities or to port-
folios of securities . In this chapter, we show that the cross-sectional inter-
action of security returns over time is an important aspect of stock-price
dynamics. We document the fact that stock returns are often positively
cross-autocorrelated, which reconciles the negative serial dependence in
individual security returns with the positive autocorrelation in market in-
dexes. This also implies that stock market overreaction need not be the sole
explanation for the profitability in contrarian portfolio strategies . Indeed,
the empirical evidence suggests that less than 50 percent of the expected
profits from a contrarian investment rule may be attributed to overreaction ;
the majority of such profits is due to the cross effects among the securities .
We have also shown that these cross effects have a very specific pattern for
size-sorted portfolios: They display a lead-lag relation, with the returns of
larger stocks generally leading those of smaller ones. But a tantalizing ques-
tion remains to be investigated : What are the economic sources of positive
cross-autocorrelations across securities?
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Appendix A5
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A~rpendix Α5

Sampling Theory for Ck, Ók, and É [mo t (k) ]

To derive the sampling theory for the estimators Ck, Ok, and É[~ t(k)], we
reexpress them as averages of artificial time series and then apply standard
asymptotic theory to those averages. We require the following assumptions :

(Al ) For all t, i, j, and k the following condition is satisfied for finite
constants K > 0, ~ > 0, and r > 0 :

Εί~~ι-k~ι~4~'+s)~ < Κ < οο .

	

(Α5 .7)

(A2) The vector of returns R~ is either ~x-mixing with coefficients of size
2r/(r - 1) or ~-mixing with coefficients of size 2r/(2r - 1) .

These assumptions specify the trade-off between dependence and hetero-
geneity in Ri that is admissible while still permitting some form of the central
limit theorem to obtain. The weaker is the moment condition (Assumption
(A2)), the quicker the dependence in Rr must decay, and vice versa . 22 Ob-
serve that the covariance-stationarity of Rt is not required. Denote by Ckt

and Ok~ the following two time series :

Ν
Ckt = i4ιιt-kRmt - /-tm - Ν2 Σ(Rit-kRit - Ν~ ?)

	

(Α5.8)
i=1

N-1 N
~k~ _ -

N2
~(Ri~-knit - l-t2)

	

(~•9 )
i=1

where ~ i and ~,,, t are the usual sample means of the returns to security i and
the equal-weighted market index, respectively. Then the estimators Ck, Ók,
and ~ 2(~) are given by

Ck =

Τ
Οα = 1 Σ Οατ

	

(Α5 •1 1)Τ - k τ-k+ι

σ 2 (~-~) _

1

	

Τ

Σ Ckτ

	

(Α5.10)
Τ - k ~-k+ι

(A5.12)

Because we have not assumed covariance-stationarity, the population quan-
tities Ck and Ok obviously need not be interpretable according to Equation

22 5ee Phillips (1987) and White (1984) for further discussion of this trade-off .
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(5.3.8) since the autocovariance matrix of R~ may now be time dependent .
However, we do wish to interpret Ck and Ok as some fixed quantities that are
time independent; thus, we require :

(A3) The following limits exist and are finite :

Although the expectations E(Ck ~) and E(Okr ) may be time dependent, As-
sumption (A3) asserts that their averages converge to well-defined limits ;
hence, the quantities Ck and Ok may be viewed as "average" cross- and own-
autocovariance contributions to expected profits . Consistent estimators of
the asymptotic variance of the estimators Ck and Ók may then be obtained
along the lines of Newey and West (1987), and are given by ~2 and ~ó,
respectively, where

1

	

q

	

1
σ2

	

Τ-k Ύ`α(~)+2Σαj(q)Ύ~kίj) Ι

	

(Α5.15)
j=1

1

	

9

T - k Yok (~) + 2~ ~j(q) Ýoß (1)
j=~

~j(q) _- 1- q+ 1

	

q< T

	

(A5.17)

and yak (j) and Wok (j) are the sample jth order autocovariances of the time
series Ck i and Ok~, respectively, that is,

σό =

1

	

~
Υια(~) - 7, _

k Σ (Ckt-1 - Ck)(Gkt - Ck)

	

(Α5.18)
ε=k+j+1

1

	

~
Υοα(J) = 7, _ k

~, (Οkε-1 - 0k)(Οkι - 0k) .

	

(Α5 .19)
t=k+j+1

Assuming that q ^~ o(Ti~ 4 ), Newey and West (1987) show the consistency
(Al)-(Α3) .23 Observe that these asymptotic variance estimators are robust
to general forms of heteroskedasticity and autocorrelation in the Ck ~ and Ok~

~~In our empirical work we choose q = 8 .

1

	

r

Τ φ Τ- k
~ Ε[Gkzl = Gk

	

(Α5.13)
ι=k+1

7.

lim	1 	Σ ΕίΟαz~ = 0k .

	

(Α5.14)
r-~~ Τ - k τ=k+ι

(A5.16)
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time series . Since the derivation of heteroskedasticity- -and autocorrelation-

consistent standard errors for the estimated expected profits É[~i(k)] is
virtually identical, we leave this to the reader.



Long-Term Memory
in Stock Market Prices

6.1 Introduction

THAT ECONOMIC TIME 5~~~~5 can exhibit long-range dependence has been a
hypothesis of many early theories of the trade and business cycles . Such the-
ories were often motivated by the distinct but nonperiodic cyclical patterns
that typified plots of economic aggregates over time, cycles of many periods,
some that seem nearly as long as the entire span of the sample . In the fre-
quency domain such time series are said to have power at low frequencies .
So common was this particular feature of the data that Granger (19fifi) con-
sidered it the "typical spectral shape of an economic variable ." It has also
been called the "Joseph Effect" by Mandelbrot and Wallis (1968) , a playful
but not inappropriate biblical reference to the Old Testament prophet who
foretold of the seven years of plenty followed by the seven years of famine
that Egypt was to experience . Indeed, Nature's predilection towards long-
range dependence has been well-documented in hydrology, meteorology,
and geophysics, and to the extent that the ultimate sources of uncertainty
in economics are natural phenomena like rainfall or earthquakes, we might
also expect to find long-term memory in economic time series . t

The presence of long-memory components in asset returns has impor-
tantimplications for many of the paradigms used in modern financial eco-
nomics. For example, optimal consumption/savings and portfolio decisions
may become extremely sensitive to the investment horizon if stock returns
were long-range dependent. Problems also arise in the pricing of derivative
securities (such as options and futures) with martingale methods, since the
continuous time stochastic processes most commonly employed are incon-

1 Haubrich (1993) and Haubrich and Lo (1989) provide a less fanciful theory of long-range
dependence in economic aggregates .
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sistent with long-term memory (see Maheswaran, 1990 ; Maheswaran and
Sims, 1990 ; Sims, 1984, for example) . Traditional tests of the capital asset
pricing model and the arbitrage pricing theory are no longer valid since
the usual forms of statistical inference do not apply to time series exhibiting
such persistence . And the conclusions of more recent tests of "efficient"
markets hypotheses or stock market rationality also hang precariously on
the presence or absence of long-term memory. 2

Among the first to have considered the possibility and implications of
persistent statistical dependence in asset returns was Mandelbrot (1971) .
Since then, several empirical studies have lent further support to Mandel-
brot'sfindings . For example, Greene and Fielitz (1977) claim to have found
long-range dependence in the daily returns of many securities listed on
the New York Stock Exchange . More recent investigations have uncovered
anomalous behavior in long-horizon stock returns ; 3 alternately attributed
to speculative fads and to time-varying conditional expected returns, these
long-run swings may be further evidence of the Joseph effect.

In this chapter we develop a test for such forms of long-range depen-
dence using a simple generalization of a statistic first proposed by the English
hydrologist Harold Edwin Hurst (1951) . Thίs statistic, called the "resealed
range" or "range over standard deviation" or "R/S" statistic, has been re-
fined by Mandelbrot (1972, 1975) and others in several important ways
(see, for example, Mandelbrot and Taqqu, 1979, and Mandelbrot and Wal-
lis, 1968, 1969a-c) . However, such refinements were not designed to dis-
tinguish between short-range and long-range dependence (in a sense to be
made precise below), a severe shortcoming in applications of R/S analysis
to recent stock returns data since Lo and MacKinlay (1988b, 1990b) show
that such data display substantial short-range dependence . Therefore, to
be of current interest, any empirical investigation of long-term memory in
stock returns must first account for the presence of higher frequency auto-
correlation .

By modifying the resealed range appropriately, we construct a test statis-
tic that is robust to short-range dependence, and derive its limiting distri-
bution under both short-range and long-range dependence . Contrary to
the findings of Greene and Fielitz (1977) and others, when this statistic is
applied to daily and monthly stock return indexes over several different
sample periods and sub-periods, there is no evidence of long-range depen-
dence once the effects of short-range dependence are accounted for . Monte
Carlo experiments indicate that the modified R/S test has reasonable power
against at least two particular models of long-range dependence, suggesting

2See LeRoy (1989) and Merton (1987) for excellent surveys of this recent literature .
3 See, for example, Fama and French (1988), Jegadeesh (1989, 1990), and Poterba and

Summers (1988) .
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that the time series behavior of stock returns may be adequately captured
by more conventional models of short-range dependence .

The particular notions of short-term and long-term memory are defined
in Section 6 .2 and some illustrative examples are given . The test statistic ~s
presented in Section 6 .3 and its limiting distributions under the null and
alternative hypotheses are derived via functional central limit theory. In
Section 6.4 the empirical results are reported, and Monte Carlo simulations
that illustrate the size and power of the test in finite samples are presented
in Section 6 .5. We conclude in Section 6.6 .

6.2 Long-Range Versus Short-Range Dependence

To develop a method for detecting long-term memory, the distinction be-
tween long-range and short-range statistical dependence must be made pre-
cise . One of the most widely used concepts of short-range dependence is
the notion of "strong-mixing" due to Rosenblatt (1956), a measure of the
decline in statistical dependence between events separated by successively
longer spans of time . Heuristically, a time series is strong-mixing if the max-
imal dependence between events at any two dates becomes trivially small as
the time span between those two dates increases . By controlling the rate at
which the dependence between past and future events declines, it is possi-
ble to extend the usual laws of large numbers and central limit theorems
to dependent sequences of random variables . We adopt strong-mixing as
an operational definition of short-range dependence in the null hypothesis
of Section 6 .2 .1 . In Section 6 .2.2, we give examples of alternatives to short-
range dependence such as the class of fractionally-differenced processes
proposed by Granger and Joyeux (1980) , Hosking (1981) , and Mandelbrot
and Van Ness (1968) .

6.2.1 The Null Hypothesis

Let P~ denote the price of an asset at time t and define Xt - log PI - logPt_~
to be the continuously compounded single-period return of that asset from
t-1 to t . With little loss in generality, let all dividend payments be reinvested
in the asset so that X~ is indeed the total return of the asset between t - 1
and t . 4 It is assumed throughout that

where ~ is an arbitrary but fixed parameter and ~ t is a zero mean random
variable . Let this stochastic process {XI(~)} be defined on the probability

4This is in fact how the stock returns data are constructed.

Χι = ~ + εt>

	

(6.2 .η
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space (~, F, P) and define

ß(A,13) __

	

sup ~P(A ~ B) - P(A)P(B) ~ , A C .~, .t3 C F . (6.2 .2)
[ΑΕ . .Q,ΒΕα}

The quantity ~(A, .t3) is a measure of the dependence between the two
~-fields A and C3 in F. Denote by 135 the Borel ~-field generated b~
{XS (~), . . . , X~(~)}, i .e ., 135 - ~(XS (~), . . . , Xt (~)) C .~. Define the coef-
ficients ~k as

~k =_ sup ~(13~ ~, ~+ k ) .

	

(6.2 .3)

Then {X~(~)} is said to be strong-mixing if limk~~ ~k = 0 . 5 Such mixing
conditions have been used extensively in the recent literature to relax the
assumptions that ensure the consistency and asymptotic normality of vari-
ous econometric estimators (see, for example, Chan and Wei, 1988 ; Phillips,
1987; White, 1980 ; White and Domowitz, 1984) . As Phillips (1987) observes,
these conditions are satisfied by a great many stochastic processes, includ-
ing all Gaussian finite-order stationary ARMA models . Moreover, the in-
clusion of a moment condition also allows for heterogeneously distributed
sequences, an especially important extension in view of the apparent insta-
bilities of financial time series .

In addition to strong mixing, several other conditions are required as
part of the null hypothesis in order to develop a sampling theory for the
test statistic proposed in Section 6 .3 . In particular, the null hypothesis is
composed of the following four conditions on ~ z :

(Al ) E [~~] = 0 for all t ;

(A2) sup E[~~~~ß] < oo for some ß > 2 ;

η 1 2

(Α3) 0 < σ2 = lim Ε ~ (Σ ε~ ι < οο ;
η~

	

/~~-ι

(A4) {~~} is strong-mixing with mixing coefficients ~k that satisfy

ι-~Σ α~ < οο .
~_~

Condition (A1) is standard . Conditions (A2) through (A4) are restrictions
on the maximal degree of dependence and heterogeneity allowable while

SThere are several other ways of measuring the degree statistical dependence, giving rise
to other notions of "mixing ." For further details, see Eberlein and Tagqu (1986), Rosenblatt
(1956), and White (1984) .
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still permitting some form of the law of large numbers and the (functional)
central limit theorem to obtain. Although (A2) rules out infinite variance
marginal distributions of ~ t such as those in the stable family with character-
istic exponent less than 2, the disturbances may still exhibit unconditional
leptokurtosis via time-varying conditional moments (e.g ., conditional het-
eroskedasticity) . Moreover, since there is a trade-off between (A2) and (A4) ,
the uniform bound on the moments can be relaxed if the mixing coefficients
decline faster than (A4) requires . 6 For example, if ~ t is required to have
finite absolute moments of all orders (corresponding to ß ~ oo), then
ak must decline faster than 1/k . However, if ~ t is restricted to have finite
moments only up to order 4, then ~ek must decline faster than 1/ k 2 . These
conditions are discussed at greater length by Phillips (1987) .

Of course, it is too much to hope that all forms of short-memory pro-
cesses are captured by (Al)-(A4) . For example, if ~ t were the first difference
of a stationary process, its spectral density at frequency zero vanishes, violat-
ing (A3) . Yet such a process certainly need not be long-range dependent .
A more subtle example is given by Ibragimov and Rozanov (1978)-a sta-
tionary Gaussian process with spectral density function

°°

	

cos k~
f (~) = exp ~

	

(6.2.4)
~_~ k log k + 1

which is strong-mixing but has unbounded spectral density at the origin .
The stochastic process with 1/f(~) for its spectral density is also strong-
mixing, but 1/f(~) vanishes at the origin . Although neither process is
long-range dependent, they both violate (A3) . Unfortunately, a general
characterization of the implications of such processes for the behavior of
the test statistic proposed in Section 6 .3 is currently unavailable. Therefore,
a rejection of the null hypothesis does not necessarily imply that long-range
dependence is present but merely that, if the rejection is not a type I error,
the stochastic process does not satisfy all four conditions simultaneously .
Whether or not the composite null (Al)-(A4) is a useful one must there-
fore depend on the particular application at hand .

In particular, although mixing conditions have been widely used in
the recent literature, several other sets of assumptions might have served
equally well as our short-range dependent null hypothesis . For example, if
{~ t } is assumed to be stationary and ergodic, the moment condition (A2)
can be relaxed and more temporal dependence than (A4) is allowable (see
Hall and Heyde, 1980) . Whether or not the assumption of stationarity is a

6See Herrndorf (1985) . One of Mandelbrot's (1972) arguments in favor of R/S analysis is
that finite second moments are not required . This is indeed the case if we are interested only
in the almost sure convergence of the statistic . But since for purposes of inference the limiting
distribution is required, a stronger moment condition is needed here .
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restrictive one for financial time series is still an open question . There is
ample evidence of changing variances in stock returns over periods longer
than five years, but unstable volatilities can be a symptom of conditional
heteroskedasticity which can manifest itself in stationary time series . Since
the empirical evidence regarding changing conditional moments in asset
returns is mixed, allowing for nonstationarities in our null hypothesis may
still have value. Moreover, (Al)-(A4) may be weakened further, allowing
for still more temporal dependence and heterogeneity, hence widening the
class of processes contained in our null hypothesis .

Note, however, that conditions (Al)-(A4) are satisfied by many of the re-
cently proposed stochastic models of persistence, such as those of Campbell
and Mankiw (1987) , Fama and French (1988) , and Poterba and Summers
(1988) . Therefore, since such models of longer-term correlations are con-
tained in our null, the kind of long-range dependence that (Al)-(A4) were
designed to exclude are quite different . Although the distinction between
dependence in the short run and the long run may appear to be a matter
of degree, strongly dependent processes behave so differently from weakly
dependent time series that the dichotomy proposed in our null seems most
natural. For example, the spectral densities at frequency zero of strongly de-
pendent processes are either unbounded or zero whereas they are nonzero
and finite for processes in our null . The partial sums of strongly dependent
processes do not converge in distribution at the same rate as weakly depen-
dent series. And graphically, their behavior ~s marked by cyclical patterns
of all kinds, some that are virtually indistinguishable from trends .

6.2.2 Long-Range Dependent Alternatives

In contrast to the short-term memory of "weakly dependent" (i .e ., mixing)
processes, natural phenomena often display long-term memory in the form
of nonperiodic cycles. This has lead several authors to develop stochastic
models that exhibit dependence even over very long time spans, such as
the fractionally-integrated time series models of Granger (1980), Granger
and Joyeux (1980), Hosking (1981), and Mandelbrot and Van Ness (1968) .
These stochastic processes are not strong-mixing, and have autocorrelation
functions that decay at much slower rates than those of weakly dependent
processes . For example, let Xt satisfy the following difference equation :

(1 - L) dX~ = E~,

	

~~ ^' WN(0, ~É),

	

(6.2.5)

where L is the lag operator and ~ t is white noise . Granger and Joyeux (1980)
and Hosking (1981) show that when the quantity (1 - L) d is extended to

Specifically, that the sequence {~~} is strong-mixing may be replaced by the weaker as-
sumption that it is a wear-epoch dependent function of a strong-mixing process . See McLeish
(1977) and Wooldridge and White (1988) for further details .
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noninteger powers of d in the mathematically natural way, the result is a
well-defined time series that is said to be "fractionally-differenced" of order d
(or, equivalently, "fractionally-integrated" of order -d) . Briefly, this involves
expanding the expression (1- L)d via the binomial theorem for noninteger
powers :

(1 - L) d = Σ (-1)k~k~Lk,
k=0

d _ d(d - 1)(d - 2) • • • ( d-k ~-1)

( k)

	

k!

	

'

and then applying the expansion to Xt :

(6.2 .6)

dl
( 1 - L)dΧt = Σ (-1)k ( ' Lk Χ1 = Σ Αk Χ1-k = Et

	

(62.7)
k=Λ

	

k

	

k=0

where the autoregresswe coefficients A k are often re-expressed in terms of
the gamma function :

Ak = (- 1) k 1 k
/ _ ~( d)p(k+1)

.

	

(6.2 .8)

Xt may also be viewed mechanic

\

all

/

y as an infinite-order MA process since

~(k+d)
X~ _ (1 - L)-dEt = B(L)~~,

	

Bk
= ~(d) ~(k + 1)

.

	

(6.2.9)

It is not obvious that such a definition of fractional-differencing might yield
a useful stochastic process, but Granger (1980) , Granger and Joyeux (1980) ,
and Hosking (1981) show that the characteristics of fractionally-differenced
time series are interesting indeed . For example, it may be shown that Xt
~s stationary and invertible for d E (- 2 , 2 ) (see Hosking, 1981) , and ex-
hibits a unique kind of dependence that is positive or negative depending
on whether d is positive or negative, i .e ., the autocorrelation coefficients
of Xt are of the same sign as d . So slowly do the autocorrelations decay
that when d is positive their sum diverges to infinity, and collapses to zero
when d is negative s To develop a sense of this long-range dependence,
compare the autocorrelations of a fractionally-differenced X~ with those of a
stationary AR(1) in Table 6 . L Although both the AR(1) and the fractionally-
differenced (d = 3 ) series have first-order autocorrelations of 0 .500, at lag 25

aMandelbrot and others have called the d < 0 case "anti-persistence," reserving the term
"long-range dependence" for the d > 0 case . However, since both cases involve autocorrela-
tions that decay much more slowly than those of more conventional time series, we call both
long-range dependent.
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Table 6.1 . Comfiarison of autocorrelation functions of frac-
tionally differenced time series (1 - L)dXz = ~~ for d = 3,
-~ with that of an AR(1) X~ = pX~-~ + ~~, p = .5. The
variance of ~ t was chosen to yield a unit variance for X~ in all
three cases.

γk . ..

ρ(k)

	

ρ(k)

	

ρ(k)Lag k

	

ίd = ~~

	

ίd = - 37

	

ί~ί1), Ρ = •5 7

1

	

0.500

	

-0.250

	

0.500
2

	

0.400

	

-0.071

	

0.250
3

	

0.350

	

-0.036

	

0.125
4

	

0.318

	

-0.022

	

0.063
5

	

0.295

	

-0.015

	

0.031

10

	

0.235

	

-0.005

	

0.001
25

	

0.173

	

-0.001

	

2.98 χ 10_ 8

50

	

0.137

	

-3.24 χ 10 -4

	

8.88 χ 10-ι ε

100

	

0.109

	

-1.02 χ 10-4

	

7.89 χ 10-3ι

the AR(1) autocorrelation is 2 .98 x 10 -g whereas the fractionally-differenced
series has autocorrelation 0 .173, declining only to 0 .109 at lag 100 .

In fact, the defining characteristic of long-range dependent processes
has been taken by many to be this slow decay of the autocovariance function .
Therefore, more generally, long-range dependent processes may be defined
to be those processes with autocovariance functions ~~ such that

k°L(k) for v ~ (-1, 0) or
-k°L(k) for v ~ (-2, -1), as k --i οο,

	

(6.2 .10)

where L(k) is any slowly varying function at infinity . 9 This is the definition
we shall adopt in the analysis to follow . As an example, the autocovariance
function of the fractionally-differenced process (6.2 .5) is

_

	

~É~(1 2d) ~(k + d)

	

2d 1

	

(6.2.11)Yk

	

~(d) ~(1 - d) ~(k + 1 - ~ ~ ck

	

as k -i oo,

where d E (- 2 , 2 ) and c is some constant. Depending on whether d is

9Afunctionf(x)issaidtoberegularlyvaryingatinfinitywithindexpiflim~_,~ f(tx)/f(t)=xP
for all ~ > 0 ; hence regularly varying functions are functions that behave like power functions
asymptotically. When p = 0, the function is said to be slowly varying at infinity, since it behaves
like a constant for large ~ . An example of a function that is slowly varying at infinity is log x.
See Resnick (1987) for further properties of regularly varying functions .
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negative or positive, the spectral density of (6.2 .5) at frequency zero, given by

f (~) = (1 - e-`~)-d (1 - e~~)-d~~ ,,, ~~~-2a as ~ ~ 0,

	

(6.2.12)

will either be zero or infinite; thus such processes violate condition (A3),~ o

Furthermore, the results of Helson and Sarason (1967) show that these
processes are not strong-mixing ; hence they also violate condition (A4) of
our null hypothesis .~~

6.3 The Rescaled Range Statistic

To detect long-range or "strong" dependence, Mandelbrot has suggested
using the range over standard deviation or R/S statistic, also called the
"rescaled range," which was developed by Hurst (1951) in his studies of
river discharges . The R/S statistic is the range of partial sums of deviations
of a time series from its mean, rescaled by its standard deviation . Specifically,
consider a sample of returns Xi , X2, . . . , Xn and let X n denote the sample
mean (1/ n) ~~ X . Then the classical rescaled range statistic, denoted by

Q,,, is defined as

1

	

k

	

k

Q,~ - - Max ~ (X - Xn) - Min~ (X - Xn)

	

(6.3.1)
Sn 1<k<n

	

1<k< n
j=1

	

j=~

where sn is the usual (maximum likelihood) standard deviation estimator :

1/2
1

s η - ~ Σ (Χ~ - Χη) 2

	

(6.3.2)

The first term in brackets in (6.3 .1) is the maximum (over k) of the partial
sums of the first k deviations of X from the sample mean . Since the sum
of all n deviations of X's from their mean is zero, this maximum is always
nonnegative. The second term in (6.3.1) is the minimum (over k) of this
same sequence of partial sums ; hence it is always nonpositive . The differ-
ence of the two quan tities, called the "range" for obvious reasons, is always
nonnegative, hence Q,~ > ~,~2

~ o This has also been advanced as a definition of long-range dependence-see, for example,
Mandelbrot (1972) .

i ~ Note, Helson and Sarason (1967) only consider the case of linear dependence ; hence
their conditions are sufficient to rule out strong-mixing but not necessary . For example, white
noise may be approximated by a nonlinear deterministic time series (e .g . the tent map) and
will have constant spectral density, but will be strongly dependent . We are grateful to Lars
Hansen for pointing this out.

12 The behavior of Q,~ may be better understood by considering its origins in hydrological
studies of reservoir design . To accommodate seasonalities in riverflow, a reservoir's capacity
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In several seminal papers Mandelbrot, Tagqu, and Wallis demonstrate
the superiority of R/S analysis to more conventional methods of determin-
ing long-range dependence, such as analyzing autocorrelations, variance
ratios, and spectral decompositions . For example, Mandelbrot and Wallis
(1969a) show by Monte Carlo simulation that the R/S statistic can detect
long-range dependence in highly non-Gaussian time series with large skew-
ness and kurtosis . In fact, Mandelbrot (1972, 1975) reports the almost-sure
convergence of the R/S statistic for stochastic processes with infinite vari-
ances, a distinct advantage over autocorrelations and variance ratios which
need not be well-defined for such processes . Further aspects of the R/S
statistic's robustness are derived in Mandelbrot and Tagqu (1979) . Mandel-
brot (1972) also argues that, unlike spectral analysis which detects periodic
cycles, R/S analysis can detect nonperiodic cycles, cycles with periods equal
to or greater than the sample period .

Although these claims may all be contested to some degree, it is a well-
established fact that long-range dependence can indeed be detected by the
"classical" R/S statistic . However, perhaps the most important shortcoming
of the rescaled range is its sensitivity to short-range dependence, implying
that any incompatibility between the data and the predicted behavior of
the R/S statistic under the null hypothesis need not come from long-term
memory, but may merely be a symptom of short-term memory .

To see this, first observe that under a simple IID null hypothesis, it
is well-known (and is a special case of Theorem 6.3.1 below) that as n in-
creases without bound, the rescaled range converges in distribution to a
well-defined random variable V when properly normalized, i .e .,

1
Q,, ~ V

	

(6.3.3)

must be chosen to allow for fluctuations in the supply of water above the dam while still
maintaining a relatively constant flow of water below the dam . Since dam construction costs
are immense, the importance of estimating the reservoir capacity necessary to meet long term
storage needs is apparent. The range is an estimate of this quantity. If Xj is the riverflow

(per unit time) above the dam and Xn is the desired riverflow below the dam, the bracketed
quantity in (6 .3 .1) is the capacity of the reservoir needed to ensure this smooth flow given the
pattern of flows in periods 1 through n . For example, suppose annual riverflows are assumed
to be 100, 50, 100, and 50 in years 1 through 4 . If a constant annual flow of 75 below the dam
is desired each year, a reservoir must have a minimum total capacity of 25 since it must store 25
units in years 1 and 3 to provide for the relatively dry years 2 and 4 . Now suppose instead that
the natural pattern of riverflow is 100, 100, 50, 50 in years 1 through 4 . To ensure a flow of 75
below the dam in this case, the minimum capacity must increase to 50 so as to accommodate
the excess storage needed in years 1 and 2 to supply water during the "dry spell" in dears 3
and 4. Seen in this context, it is clear that an increase in persistence will increase the required
storage capacity as measured by the range . Indeed, it was the apparent persistence of "dry
spells" in Egypt that sparked Hurst's life-long fascination with the Nile, leading eventually to
his interest in the rescaled range .
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Table 6.2. Fractiles of the distribution F v(v) .

Ρ(V < ν)

	

.005

	

.025

	

.050

	

.100

	

.200

	

.300

	

.400

	

.500

ν

	

0.721

	

0.809

	

0.861

	

0.927

	

1.018

	

1 .090

	

1.157

	

1.223

Ρ(V < ν)

	

.543

	

.600

	

.700

	

.800

	

.900

	

.950

	

.975

	

.995

ν

	

2

	

1 .294 1 .374

	

1.473

	

1.620 1 .747

	

1.862 2.098

where "~" denotes weak convergence and V is the range of a Brownian
bridge on the unit interval . 13

Now suppose, instead, that {X~} were short-range dependent-for ex-
ample, let X be a stationary AR(1) ;~ 4

E~ = pE~-~ + ~~,

	

~~ ^' WN(0, ~~ )~

	

~pΙ E (0, 1) .

	

(6.3.4)

Although {~ t } is short-range dependent, it yields a Q, t that does not satisfy
(6.3 .3) . In_fact, it may readily be shown that for (6.3 .4) the limiting distri-
bution of Q,~/~ is ~ V where ~ - ,/(1 + p)/(1 - p) (see Proposition 6 .3 .1
below) . For some portfolios of common stock, p is as large as 50 percent,
implying that the mean of Q,~/~ may be biased upward by 73 percent!
Since the mean of V is ~/2 ti 1 .25, the mean of the classical resealed
range would be 2.16 for such an AR(1) process . Using the critical values
of V reported in Table 6.2, it is evident that a value of 2 .16 would yield a
rejection of the null hypothesis at any conventional significance level .

This should come as no surprise since the values in Table 6 .2 correspond
to the distribution of V, not ~ V . Now by taking into account the "short-term"
autocorrelations of the XD 's-by dividing Q,z by ~ for example-convergence
to V may be restored. But this requires knowledge of ~ which, in turn,
requires knowledge of p . Moreover, if X follows a short-range dependent
process other than an AR(1) , the expression for ~ will change, as Proposition
6.3.1 below shows. Therefore, correcting for short-range dependence on a
case-by-case basis is impractical . Ideally, we would like to correct for short-
term memory without taking too strong a position on what form it takes .
This is precisely what the modified resealed range of Section 6 .3 .1 does-its
limiting distribution is invariant to many forms of short-range dependence,
and yet it is still sensitive to the presence of long-range dependence .

~ s See Billingsley (1968) for the definition of weak convergence . We discuss the Brownian
bridge and V more formally below.

14 It is impliciily assumed throughout that white noise has a Lebesgue-integrable character-
istic function to avoid the pathologies of Andrews (1984) .
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Although aware of the effects of short-range dependence on the resealed
range, Mandelbrot (1972, 1975) did not correct for this bias since his fo-
cus was the relation of the R/S statistic's logarithm to the logarithm of the
sample size as the sample size increases without bound . For short-range de-
pendent time series such as strong-mixing processes the ratio log Q, l/log n
approaches 2 in the limit, but converges to quantities greater or less than 2
according to whether there is positive or negative long-range dependence .
The limit of this ratio is often denoted by H and is called the "Hurst" coeffi-
cient. For example, the fractionally-differenced process (6 .2 .1) satisfies the
simple relation: H = d +

2
.

Mandelbrot and Wallis (1969a) suggest estimating the Hurst coefficient
by plotting the logarithm of Q,~ against the logarithm of the sample size n .
Beyond some large n, the slope of such a plot should settle down to H.
However, although H = 2 across general classes of short-range dependent
processes, the finite-sample properties of the estimated Hurst coefficient are
not invariant to the form of short-range dependence . In particular, Davies
and Harte (1987) show that even though the Hurst coefficient of a station-
ary Gaussian AR(1) is precisely 2 , the 5 percent Mandelbrot regression test
rejects this null hypothesis 47 percent of the time for an autoregressive pa-
rameter of 0 .3. Additional Monte Carlo evidence is reported in Section 6 .5 .

6.3.1 The Modified R/S Statistic
To distinguish between long-range and short-range dependence, the R/S
statistic must be modified so that its statistical behavior is invariant over
a general class of short memory processes, but deviates for long memory
processes. This ~s accomplished by the following statistic Q,, :

1

	

k

	

k

	

1
Q,~ __	 Max ~ (X; - Xn ) - Min ~ (X - X n )

J

	

(6.3.5)
~~z(q) 1<k<n

	

1 <k< n
j=1

	

j=1

where

σή(q) = 1 Σ (Χ - Χη) 2
η

;-ι

4

	

η
+
η Σ ω;(q) Σ (Χ~ - Χη)(Χ~_ ; - Χη) ~

	

(6.3.6)
;-ι

	

~=;+ι

9

=σχ+2Σω;(4)Ύ;,

	

ω;(q>=1-q+l, q < η,

	

(6.3.7)

and ~~ and y; are the usual sample variance and autocovariance estimators
of X .
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differs from Q„ only in its denominator, which is the square root of a
consistent estimator of the partial sum's variance . If {Xt } is subject to short-
range dependence, the variance of the partial sum is not simply the sum of
the variances of the individual terms, but also includes the autocovariances .
Therefore, the estimator ~n (q) involves not only sums of squared deviations
of X~, but also its weighted autocovariances up to lag q . The weights ~~ (q) are
those suggested by Newey and West (1987) and always yield a positive ~ń (q),
an estimator of 2~ times the (unnormalized) spectral density function of X~
at frequency zero using a Bartlett window. Theorem 4 .2 of Phillips (1987)
demonstrates the consistency of ~n(q) under the following conditions :~ s

(A2') supE[~~1~2~] < oo for some ß > 2 .

(A5) As n increases without bound, q also increases without bound such
that q ^- o(n~~ 4 )

By allowing q to increase with (but at a slower rate than) the number of
observations n, the denominator of Q,z adjusts appropriately for general
forms of short-range dependence . Of course, although the conditions (A2')
and (A5) ensure the consistency of ~ 2 (q), they provide little guidance in
selecting a truncation lag q. Monte Carlo studies such as Andrews (1991) and
Lo and MacKinlay (1989a) have shown that when q becomes large relative
to the sample size n, the finite-sample distribution of the estimator can be
radically different from its asymptotic limit . However q cannot be chosen
too small since the autocovariances beyond lag q may be substantial and
should be included in the weighted sum . Therefore, the truncation lag must
be chosen with some consideration of the data at hand. Andrews (1991)
does provide a data-dependent rule for choosing q, however its minimax
optimality is still based on an asymptotic mean-squared error criterion-
little is known about how best to pick q in finite samples . Some Monte Carlo
evidence is reported in Section 6 .5 .

Since there are several other consistent estimators of the spectral density
function at frequency zero, conditions (A2') and (A5) can be replaced with
weaker assumptions if conditions (Al ) , (A3) , and (A4) are suitably modified .
I~ for example, X~ is m-dependent (so that observations spaced greater than
m periods apart are independent), it is well-known that the spectral den-
sity at frequency zero may be estimated consistently with a finite number
of unweighted autocovariances (see, for example, Hansen, 1982, Lemma
3.2) . Other weighting functions may be found in Hannan (1970, Chapter
V 4) and may yield better finite-sample properties for Q,, than the Bartlett

~ 5~drews (1991) has improved the rate restriction in (A5) to o(n t ~2 ), and it has been
conjectured that o(n) is sufficient.
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window without altering the limiting null distribution derived in the next
section, ~s

6.3.2 The Asymptotic Distribution of Q, Z

To derive the limiting distribution of the modified rescaled range Q,, under
our null hypothesis, consider the behavior of the following standardized
partial sum :

Wn (~) __	1 Sl ni l,

	

~ E [0, 1],

	

(6.3.8)
~~

where Sk denotes the partial sum ~~ ~ ~~ and [n~] is the greatest integer
less than or equal to n~ . The sample paths of Wn(~) are elements of the
function space D [0, 1 ] , the space of all real-valued functions on [0, 1 ] that
are right-continuous and possess finite left limits . Under certain conditions
it may be shown that Wn(~) converges weakly to a Brownian motion W(~)
on the unit interval, and that well-behaved functionals of Wn (~) converge
weakly to the same functionals of Brownian motion (see Billingsley, 1968,
for further details) . Armed with these results, the limiting distribution of
the modified rescaled range may be derived in three easy steps, summarized
in the following theorem .~~

Theorem 6.3.1 18 If {~ t } satisfies assumptions (AI), (AZ"), (A3)-(AS), then as n
increases without bound:

1

	

~
(a) Max	~ (X - Xn ) ~ Max W°(~) = M°,

1</~< n ~n(q)~
1-1

	

0<_~cl

1

	

k

(b) Min	 ~(

	

Xn) ~ Min W°(~) = m°,
~<~<n dnO~

	

`~

	

o«<~4

	

~-~
1

(c) ~Qn~ M°-m°-V.
n

Parts (a) and (b) of Theorem 6.3 .1 follow from Lemmas A.1 and A.2 of
the Appendix, and Theorem 4 .2 of Phillips (1987), and show that the max-
imum and minimum of the partial sum of deviations of X from its mean
converge respectively to the maximum and minimum of the celebrated
Brownian bridge W°(~) on the unit interval, also called "pinned" or "tied-
down" Brownian motion because W°(0) = W°(1) = 0 . That the limit of

~ s For example, Andrews (1991) and Gallant (1987) both advocate the use of Parzen weights,
which also yields a positive semi-definite estimator of the spectral density at frequency zero but
is optimal in an asymptotic mean-squared error sense.

	

_
i~Mandelbrot (1975) derives similar limit theorems for the statistic Qn under the more

restrictive IID assumption, in which case the limiting distribution will coincide with that of Q,, .
Since our null hypothesis includes weakly dependent disturbances, we extend his results via
the more general functional central limit theorem of Herrndorf (1984, 1985) .

18 Proofs of theorems are given in the Appendix .
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the partial sums is a Brownian bridge is not surprising since the summands
are deviations from the mean and must therefore sum to zero at k = n.
Part (6.3 .1) of the theorem follows immediately from Lemma A .2 and is the
key result, allowing us to perform large sample statistical inference once the
distribution function for the range of the Brownian bridge is obtained . This
distribution function is implicitly contained in Feller (1951), and is given
explicitly by Kennedy (1976) and Siddiqui (1976) as 19

φ 2
FV(ν) = 1 + 2 Σ(1 - 4k2ν2)e2(kv) .

k=1
(6.3.9)

Critical values for tests of any significance level are easily obtained from
this simple expression (6 .3 .9) for Fv . The values most commonly used are
reported in Table 6 .2. The moments of V may also be readily computed from
(6.3.9) ; a simple calculation shows that E[ V] _ ~/~/2 and E[ V 2 ] _ X 2/6,
thus the mean and standard deviation of V are approximately 1 .25 and 0.27
respectively. Plots of F~ and fV are given in Figure 6 .1, along with Gaussian
distribution and density functions (with the same mean and variance as V)
for comparison . The distribution of V is positively skewed and most of its
mass falls between 4 and 2 .

6.3.3 The Relation Between Q,, and Q,,

Since Q,, and Q~, differ solely in how the range is normalized, the limiting
behavior of our modified R/S statistic and Mandelbrot's original will only
coincide when ~n(q) and sn are asymptotically equivalent . From the defi-
n~tions of ~n(q) and sn , it is apparent that the two will generally converge
in probability to different limits in the presence of autocorrelatio_n. There-
fore, under the weakly dependent null hypothesis the statistic Q, 2/~ will
converge to the range V of a Brownian bridge multiplied by some constant .
More formally, we have the almost trivial result :

Proposition 6.3 .1 . If lim n~~ E [~~ t ~~ / n] is finite and positive, then under as-
sumptions (A1)-(A4), Q,,/~ ~ ~V where

ι

	

2
limn~φ Ε ή

\Σ~
t ε~)

ξ2 =

	

		(6.3 .10)
limη~ φ Ε[ήΣ~t ~~]

Therefore, normalizing the range by sn in place of ~n (q) changes the
limiting distribution of the rescaled range by the multiplicative constant

~sWe are grateful to David Aldous and Yin-Wong Cheung for these last two references .
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F„(v) and f„(v)
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Figum 6.1 . Distribution and density function of the range V of a Brownian bridge. Dashed
curves are the normal distribution and density functions with mean and variance equal to
those of V (~/~/2 and X 2 16 respectively) .

~ . This result was used above to derive the limiting distribution of Q, t in
the AR(1) case, and closed-form expressions for ~ for general stationary
ARMA(p, q) processes may readily be obtained using (6.3.10) .

Since it is robust to many forms of heterogeneity and weak depen-
dence, tests based on the modified _R/S statistic Q,Z cover a broader set
of null hypotheses than those using Q,, . More to the point, the modified
rescaled range is able to distinguish between short-range and long-range
dependence-the classical rescaled range cannot. Whereas an extreme
value for Qn in_dicates the likelihood of long-range dependence, a rejection
based on the Qjz statistic is also consistent with short-range dependence in
the data. Of course, it is always possible to tabulate the limiting distribution
of the classical R/S statistic under a particular model of short-range de-
pendence, but this obviously suffers from the drawback of specificity . The
modified rescaled range converges weakly to the range of a Brownian bridge
under general forms of weak dependence .

Despite its sensitivity to short-range dependence, the classical R/S statis-
tic may still be used to test for independently and identically distributed Xt 's .
Indeed, the AR(1) example of Section 6 .3 and the results of Davies and
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Harte (1987) suggest that such a test may have considerable power against
non-IID alternatwes . However, since there is already a growing consensus
among financial economists that stack market prices are not independently
and identically distributed, this null hypothesis is of less immediate interest .
For example, it is now well-known that aggregate stock market returns ex-
hibit significant serial dependence for short-horizon holding periods and
are therefore not independently distributed .

6.3.4 The Behavior of Q,Z Under Long Memory Alternatives

To complete the analysis of the modified resealed range, its behavior under
long-range dependent alternatives remains to be investigated . Although this
depends of course on the specific alternative at hand, surprisingly general
results are available based on the following result from Taqqu (1975) .

Theorem 6.3.2 (Taqqu) . Let {~~} be a zero-mean stationary Gaussian stochastic pro-
cess such that:

~n - Var[Sn ] ^~ n2HL(n)

	

(6.3.11)

where Sn is the partial sum ~~ i ~~, H E (0, 1), and L(n) is a slowly varying
function at infinity . Define the following function on D [0, 1 ]

1
Wn(τ) _ - s~n=~,ση

τ Ε (0, 1) .

	

(6.3.12)

Then W~(~) ~ WH(~), where WF~(~) is a fractional Brownian motion of order H
on [0, 1] .

Theorem 6.3.2 is a functional central limit theorem for strongly depen-
dent processes, and is only a special case of Tagqu's (1975) considerably
more general results. In contrast to the usual functional central limit the-
orem in which properly normalized partial sums converge to a standard
Brownian motion, Theorem 6 .3.2 states that long-range dependent partial
sums converge weakly to a fractional Brownian motion, first defined by Man-
delbrot and Van Ness (1968) as the following stochastic integral :

WH(~) _-	1

	

J
~(~ - x)~

-
2 dW(x) .

	

(6.3.13)
~~H+2} o

Observe that when H = 2, Wx(~) reduces to a standard Brownian motion .
In that case, there is no long-range dependence, the variance of the partial
sums grows at rate n, and the spectral density at frequency zero is finite and
positive . If H E ( 2 , 1) (H ~ (0, 2) ) , there is positive (negative) long-range
dependence, the variance grows faster (slower) than n, hence the spectral
density at frequency zero is infinite (zero) .
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In a fashion analogous to Theorem 6 .3.1, the behavior of Qn under
long-range dependent alternatives may now be derived in several steps using
Lemmas A.2, A.3, and Theorem 6 .3 .2 :

Theorem 6.3.3. Let {~ t } be a zero-mean stationary Gaussian stochastic process with
autocovariance function yk such that

yk ..!
k2x-2L(k) for H ~ (2 , 1) or,

{ _ k2x-2L(k) for H E (0, 2 )
as

	

k ~ φ (6.3.14)

where L(k) is a slowly varying function at infinity. Then as n and q increase without
bound such that (q/ n) ~ 0, we have:

1

	

k

(α)

	

Μαχ - Σ (

	

Χπ) ~ Μαχ ωi,(τ) = Μχ,
1_<k_<η ση

	

~

	

0<τη
j=1

1

	

k
(b)

	

Min - Σ (

	

Χη) ~ Min W~(τ) = mH,
ι<k<η ση
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ο« <ι
~-ι

ση(q)~ 1
( ~ )

	

Rrz =

	

~ ~ Μχ - m}{ = VN,σ η
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ρ

	

(οο forH Ε (2, 1),
(d)

	

αη
~η(q)~ ~

	

0 forH Ε (0, 2),

1

	

_

	

(οο forH Ε (2, 1),
j
l

e( )

	

~

	

0 forH Ε (0, 2),

where ~n(q) is defined in (6.3.6), ~ n is defined in Theorem 6.3.2, and WH(~)
WH(~) - ~WH(1) . 20

Theorem 6 .3 .3 shows that the modified rescaled range test is consistent
against a class of long-range dependent stationary Gaussian alternatives . In
the presence of positive strong dependence, the R/S statistic dwerges in
probability to infinity ; in the presence of negative strong dependence, it
converges in probability to zero . In either case, the probability of rejecting
the null hypothesis approaches unity for all stationary Gaussίan stochastic
processes satisfying (6 .3 .14), a broad set of alternatives that includes all
fractionally-differenced Gaussian ARIMA(p, d, q) models with d E (- 2 , 2) .

From (a) and (b) of Theorem 6 .3.3 it is apparent that the normalized
population rescaled, R,,/~, converges to zero in probability. Therefore,

20 Although it is tempting to call Wy (~) a "fractional Brownian bridge," this is not the most
natural definition despite the fact that it is "tied down." See Jonas (1983, Chapter 3.3) for a
discussion .
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whether or not Q,Z/~ approaches zero or infinity in the limit depends
entirely on the limiting behavior of the ratio ~ n/~ n (q) . That is,

Q~,

	

ση R„
~ -

ση(q)
~

	

(6 .3 .15)

so that if the ratio ~n/~ n(q) diverges fast enough to overcompensate for the
convergence of Rn/~ to zero, then the test will reject in the upper tail,
otherwise it will reject in the lower tail. This is determined by whether d lies
in the interval (0, 2 ) or (-2 , 0) . When d = 0, the ratio ~n/~n(q) converges to
unity in probability and, as expected, the normalized R/S statistic converges
in distribution to the range of the standard Brownian bridge .

Of course, if one is interested exclusively in fractionally-differenced
alternatives, a more efficient means of detecting long-range dependence
might be to estimate the fractional differencing parameter directly. In such
cases, the approaches taken by Geweke and Porter-Hudak (1983), Sowell
(1990), and Yajima (1985, 1988) may be preferable . The modified R/S
test is perhaps most useful for detecting departures into a broader class
of alternative hypotheses, a kind of "portmanteau" test statistic that may
complement a comprehensive analysis of long-range dependence .

6.4 R/S Analysίs for Stock Market Returns

The importance of long-range dependence in asset markets was first consid-
ered byMandelbrot (1971) . More recently, the evidence uncovered by Fama
and French (1988) , Lo and MacKnlay (1988b) , and Poterba and Summers
(1988) may be symptomatic of a long-range dependent component in stock
market prices . In particular, Lo and MacKinlay (1988b) show that the ratios
of k-week stock return variances to k times the variance of one-week returns
generally exceed unity when k is small (2 to 32) . In contrast, Poterba and
Summers (1988) find that this same variance ratio falls below one when k is
much larger (96 and greater) .

To see that such a phenomenon can easily be generated by long-range
dependence, denote by X~ the time-t return on a stock and let it be the sum
of two components Xat and Xb ~ where

(1 - L)dΧαι = Εα>

	

(1 - ρΖ)Χαι = ηι,

	

(6.4.1)

and assign the values (-0 .2, 0.25, 1, i .l) to the parameters (d, p, ~É , ~~ ) .
Let the ratio of the k-period return variance to k times the variance of X~
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be denoted by VR(k) . Then a simple calculation will show that for the
parameter values chosen :

VR(2) = 1 .04, VR(10) = 10.4,
VR(3) = 1 .06, VR(50) = 0.97,
VR(4) = 1 .07, VR(100) = 0 .95,
VR(5) = 1 .06,

	

VR(250) = 0.92 .

The intuition for this pattern of variance ratios comes from observing that
VR(k) is a weighted sum of the first k - 1 autocorrelation coefficients of Xt
with linearly declining weights (see Lo and MacKinlay, 1988b) . When k is
small the autocorrelation of X~ is dominated by the positively autocorrelated
AR(1) component Xb t . But since the autocorrelations of Xb l decay rapidly
relative to those of ~ 1 , ask grows the influence of the long-memory compo-
nent eventually outweighs that of the AR(1) , ultimately driving the variance
ratio below unity.

6.4. I The Evidence fir Weekly and Monthly Returns

Greene and Fielitz (1977) were perhaps the first to apply R/S analysis to
common stock returns. More recent applications include Booth and Kaen
(1979) (gold prices), Booth, Kaen, and Koveos (1982) (foreign exchange
rates), and Helms, Kaen, and Rosenman (1984) (futures contracts) . These
and earlier applications of R/S analysis by Mandelbrot and Wallis (1969a)
have three features in common : (1) They provide no sampling theory with
which to jVudge the statistical significance of their empirical results ; (2) they
use the Q,t statistic which ~s not robust to short-range dependence ; and
(3) they do not focus on the R/S statistic itself, but rather on the regression
of its logarithm on (sub)sample sizes . The shortcomings of (1) and (2)
are apparent from the discussion in the preceding sections . As for (3),
Davies and Harte (1987) show such regression tests to be significantly biased
toward rejection even for a stationary AR(1) process with an autoregressive
parameter of 0.3 .

To test for long-term memory in stock returns, we use data from the
Center for Research in Security Prices (CRSP) monthly and daily returns
files. Tests are performed for the value- and equal-weighted CRSP indexes .
Daily observations for the returns indexes are available from July 3, 1962, to
December 31, 1987 yielding a sample size of 6,409 observations . Monthly
indexes are each composed of 744 observations from January 30, 1926, to
December 31, 1987. The following statistic is computed for the various
returns indexes :

Vn(q) _- ~ Qn ti V,

	

(6.4.2)
n

where the distribution Fv of V is given in (6 .3 .9) . Using the values in Table
6.2 a test of the null hypothesis may be performed at the 95 percent level
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of confidence by accepting or rejecting according to whether V n is or is not
contained in the interval [0.809, 1 .862] which assigns equal probability to
each tail .

Vn (q) is written as a function of q to emphasize the dependence of the
modified rescaled range on the truncation lag . To check the sensitivity of
the statistic to the lag length, Un(q) is computed for several different values
of q . The normalized classical Hurst-Mandelbrot rescaled range Vn is also
computed for comparison, where

Vn - ~ Q,Z ~, ~ V .

	

(6.4.3)

Table 6.3 reports results for the daily equal- and value-weighted returns
indexes. The panel labelled "Equal-Weighted" contains the Vn (q) and Vn
statistics for the equal-weighted index for the entire sample period (the
first row), two equally-partitioned sub-samples (the next two rows), and
four equally-partitioned sub-samples (the next four rows) . The modified
rescaled range is computed with q-values of 90, 180, 270, and 360 days. The
columns labelled "%-Bias" report the estimated bias of the original rescaled
range Vn , and is 100 • (~ - 1) where ~ _ ~n (q)/sn = Vn/Vn . _

Although Table 6.3 shows that the classical R/S statistic Un is statistically
significant at the 5 percent level for the daily equal-_weighted CRSP returns
index, the modified R/S statistic Un is not. While Vn is 2.63 for the entire
sample period the modified R/S statistic is 1 .46 with a truncation lag of
90 days, and 1 .50 with a truncation lag of 360 days. The importance of
normalizing by ~n(q) is clear-dividing by sn imparts a potential upward
bias of 80 percent!

The statistical insignificance of the modified R/S statistics indicates that
the data are consistent with the short-memory null hypothesis . The stability
of the Un (q) across truncation lags q also supports the hypothesis that there
is little dependence in daily stock returns beyond one or two months . For
example, using 90 lags yields a Vn of 1 .46 whereas 270 and 360 lags both
yield 1 .50, virtually the same point estimate . The results are robust to the
sample period-none of the sub-period Un(q)'s are significant. The classical
rescaled range is significant only in the first half of the sample for the value-
weighted index, and is insignificant when the entire sample is used .

Table 6.4 reports similar results for monthly returns indexes with four
values of q employed : 3, 6, 9, and 12 months. None of the modified R/S
statistics are statistically significant at the 5 percent level in any sample period
or sub-period for either index . The percentage bias is generally lower for
monthly data, although it still ranges from -0.2 to 25 .3 percent .

To develop further intuition for these results, Figure 6.2 contains the
autocorrelograms of the daily and monthly equal-weighted returns indexes,
where the maximum lag is 360 for daily returns and 12 for monthly. For both



Table 6.3 . R/S analysis of daily equal- and value-weighted CRSΡ stock returns indexes from July 3, 1962, to December 31,

1987 using the classical resealed range V~ and the modified resealed range Vn (q) . Entries in the %-bias columns are computed

as [(Vn/ V~(q)) - 1] • 100, and are estimates of the bias of the classical R/S statistic in the presence of short-term dependence .

Asterisks indicate significance at the 5 percent level.

Time Period
Sample

Size
Vn

	

V„(90) %-Bias Vn (180) %-Bias Vn(270) %-Bias Vn(360) %-Bias

Equal-Weighted :

620703-871231

	

6409

	

2.63*

	

1 .46

	

79.9

	

1 .45

	

81.1

	

1.50

	

75.2

	

1 .50

	

75.4

620703-750428

	

3204

	

3.18*

	

1 .61

	

97.0

	

1 .57

	

102.0

	

1.63

	

95.2

	

1 .62

	

96.8

750429-871231

	

3205

	

1.45

	

0.92

	

57.2

	

0.97

	

49.0

	

1.05

	

38.5

	

1 .14

	

27.3

620703-681217 1602 2.40* 1 .39 72.2 1 .46 64.7 1.72 39.7 1 .78 34.8

681219-750428 1602 2.03* 1 .07 90.7 1 .10 84.9 1.19 70.6 1.23 65.3

750428-810828 1602 1 .35 0.89 51 .6 1 .23 9.5 1.49 -9.2 1 .71 -21.0

810831-871231

	

1603

	

1 .79

	

1 .15

	

55.8

	

1 .10

	

62.4

	

1.18

	

51 .6

	

1.27

	

41 .4

Value-Weighted:

620703-871231

	

6409

	

1 .55

	

1.29

	

20.8

	

1 .26

	

22 .9

	

1 .30

	

19.1

	

1.33

	

16.8

620703-750428

	

3204

	

1 .97*

	

1.43

	

37.3

	

1.39

	

41 .4

	

1 .43

	

37.5

	

1.45

	

35.5

750429-871231

	

3205

	

1 .29

	

1.22

	

5.8

	

1.24

	

4.1

	

1 .32

	

-2.3

	

1.42

	

-9.4

620703-681217 1602 1 .67 1.43 16.8 1.45 15 .3 1 .62 3.4 1.69 -1 .3

681219-750428 1602 1 .85 1.34 38.2 1.34 38.2 1 .40 31.7 1.45 27.1
750428-810828 1602 1 .08 1.12 -3.7 1.26 -14.7 1 .34 -19.4 1.42 -24.2

810831-871231

	

1603

	

1.50

	

1 .38

	

8.8

	

1.37

	

9.2

	

1 .50

	

-0.3

	

1 .63

	

-8.0



Table 6 .4 . R/S analysis of monthly equal- and value-weighted CRSP stock returns indexes from fanuary 30, 1926, to
December3l, 1987, using the classical resealed range Vn and the modified resealed range Vn (q) . Entries in the %-bias columns
are c~mfiuted as [(Vn l Vn (q)) - 1] • 100, and are estimates of the bias of the classical R/S statistic in the firesence of short-term
dependence. Asterisks indicate significance at the 5 percent level .

Time Period
Sample
Size Vn

	

Vn(3)

	

%-Bias

	

V~(6)

	

%-Bias Vn(9) %-Bias

	

Vn(12)

	

%-Bias

Equal-Weighted:

260130-871231

	

744

	

1 .17

	

1.07

	

9.1

	

1.10

	

6.6

	

1.09

	

7.2

	

1.06

	

10.4

260130-561231

	

372

	

1 .32

	

1 .21

	

9.4

	

1.26

	

5 .1

	

1.24

	

7.1

	

1 .18

	

12.1
570131-871231

	

372

	

1 .37

	

1 .26

	

8.4

	

1 .23

	

11 .1

	

1 .27

	

7.6

	

1 .30

	

5.2

260130-410630 186 1.42 1 .31 8 .3 1 .40 1 .6 1 .39 2 .6 1 .32 8.0
410731-561231 186 1.60 1 .42 13 .1 1 .34 20.0 1 .28 25.3 1.28 25.1
570131-720630 186 1.20 1 .04 15 .9 0.99 21 .9 1 .03 17.4 1.07 12.3
720731-871231

	

186

	

1.57

	

1 .51

	

3.8

	

1 .51

	

4.3

	

1 .55

	

L2

	

1 .57

	

-0.2

Value-Weighted:

260130-871231

	

744

	

1.33

	

1 .27

	

4.5

	

1 .26

	

5.5

	

1 .22

	

8.4

	

1.19

	

11 .1

260130-561231

	

372

	

1.57

	

1 .51

	

4.5

	

1 .51

	

4.3

	

1 .44

	

9.5

	

1.38

	

14.5
570131-871231

	

372

	

1.28

	

1 .22

	

4.4

	

1 .18

	

7.9

	

1 .21

	

5.6

	

1.24

	

2.7

260130-410630 186 1.57 1 .52 3 .2 1 .55 1.0 1.49 5.5 1.42 10.6
410731-561231 186 1 .26 1.18 6.4 1 .11 12 .9 1 .07 17.1 1.08 16.1
570131-720630 186 1 .05 0.96 9.3 0.92 14.7 0.95 10.9 1.01 4.7
720731-871231

	

186

	

1 .51

	

1.48

	

1.6

	

1.45

	

4.0

	

1.47

	

2.4

	

1.49

	

1.1
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Figure 6.2. Autocorrelograms of equally-weighted CRSP daily and monthly stock returns
indexes and fractionally-differenced process with d = 1/4 . The sample period for the daily
index is July 1962 to December 1987, and is January 1926 to December 1987 for the monthly
index.

indexes only the lowest order autocorrelation coefficients are statistically sig-
nificant . For comparison, alongside each of the index's autocorrelogram
is the autocorrelogram of the fractionally-differenced process (6.2 .1) with
d = .25 and the variance of the disturbance chosen to yield a first-order auto-
correlation of3 . Although the general shapes of the fractionally-differenced
autocorrelograms seem consistent with the data, closer inspection reveals
that the index autocorrelations decay much more rapidly Therefore, al-
though short-term correlations are large enough to drive Q n and Q,Z apart,
there is little evidence of long-range dependence in Q,, itself .

Additional results are available for weekly and annual stock returns data
but since they are so similar to those reported here, we have omitted them to
conserve space . Although the annual data spans 115 years (1872 to 1986) ,
neither the classical nor the modified R/S statistics are statistically significant
over this time span .
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The evidence in Tables 6 .3 and 6.4 shows that the null hypothesis of
short-range dependence cannot be rejected by the data-there is little sup-
port for long-term memory in U.S. stock returns . With adjustments for
autocorrelation at lags up to one calendar year, estimates of the modified
rescaled range are consistent with the null hypothesis of weak dependence .
This reinforces Kandel and Stambaugh's (1989) contention that the long-
run predictability of stock returns uncovered by Fama and French (1988)
and Poterba and Summers (1988) may not be "long-run" in the time series
sense, but may be the result of more conventional models of short-range
dependence . 21 Of course, since our inferences rely solely on asymptotic
distribution theory, we must check our approximations before dismissing
the possibility of long-range dependence altogether . The finite-sample size
and power of the modified rescaled range test are considered in the next
sections .

6 .5 Size and Power

To explore the possibility that the inability to reject the null hypothesis of
short-range dependence is merely a symptom of low power, and to check
the quality of Section 6 .3's asymptotic approximations for various sample
sizes, we perform several illustrative Monte Carlo experiments . Section
6.5.1 reports the empirical size of the test statistic under two Gaussian null
hypotheses: IID and AR(1) disturbances . Section 6.5.2 presents power
results against the fractionally-differenced process (6.2 .1) for d = 3 and

3

6.5.1 The Size of the R/S Test

Table 6.5a contains simulation results for the modified R/S statistic with sam-
ple sizes of 100, 250, 500, 750, and 1,000 under the null hypothesis of inde-
pendently and identically distributed Gaussian errors . All simulations were
performed on an IBM 4381 in double precision using the random generator
G05DDF from the Numerical Algorithms Group Fortran Library Mark 12 .
For each sample size the statistic Vn (q) is computed with q = 0, 5, 10, 25, 50,
and with q chosen by Andrews' (1991) data-dependent formula :

q = fknl,

	

kn =-
~2/s •\ 1

2
ρ2/

	

(6.5.1)

2~ Moreover, several papers have suggested that these long-run results may be spurious . See,
for example, Kim, Nelson, and Startz (1991), Richardson (1993), and Richardson and Stock
(1990) .
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where [kn ] denotes the greatest integer less than or equal to kn , and p is the
estimated first-order autocorrelation coefficient of the data . 22 (Note that
this is an optimal truncation lag only for an AR(1) data-generating process-
a different expression obtains i~ for example, the data-generating process
were assumed to be an ARMA(1,1) . See Andrews (1991) for further details . )
In this case, the entry reported in the column labelled "q" is the mean of the
q's chosen, with the population standard deviation reported in parentheses
below the mean. When q = 0, Vn(q) is identical to Mandelbrot's classical
R/S statistic Vn .

The entries in the last three columns of Table 6 .5a show that the classical
R/S statistic tends to reject too frequently-e_ven for sample sizes of 1,000 the
empirical size of a 5 percent test based on Vn is 5.9 percent. The modified
R/S statistic tends to be conservative for values of q that are not too large
relative to the sample size. For example, with 100 observations and 5 lags
the empirical size of the 5 percent test using Un(q) is 2 .1 percent. However,
with 50 lags this test has a rejection rate of 31 percent! That the sampling
properties worsen with the number of lags is not surprising-the imprecision
with which the higher-order autocovariances are estimated can introduce
considerable noise into the statistic (see, for example, Lo and MacKinlay,
1989b) . But for 1,000 observations and 5 lags, the size of a 5 percent test
based on Un (q) is 5 .1 percent. Andrews' procedure yields intermediate
results, with sizes in between those of the classical R/S statistic and the
closest of the modified R/S statistics .

Table 6.5b reports the results of simulations under the null hypothesis
of a Gaussian AR(1) with autoregressive coefficient 0 .5 (recall that such a
process is weakly dependent) . The last three columns confirm the example
of Section 6.3 and accord well with the results of Davies and Harte (1987) :
tests based on the classical R/S statistic have considerable power against an
AR(1) null. In samples o_f only 100 observations the empirical size of the
5 percent test based on Vn is 38 percent and increases to 62 percent for
sample sizes of 1,000. In contrast, the empirical sizes of tests based on Vn(q)
are much closer to their nominal values since the geometrically declining
autocorrelations are taken into account by the denominator ~n(q) of Un(q) .
When q is chosen via Andrews' procedure, this yields conservative test saes,
ranging from 2 .8 percent for a sample of 100, to 4 .3 percent for a sample of
1,000 .

22~~r this procedure, the Newey-West autocorrelation weights (6.3 .7) are replaced by those
suggested by Andrews (1991) :

ω~ = 1-
kn
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Table 6 .Sa. Finite sample distribution of the modified R/S statistic under an IID null hy-
pothesis . Each set of rows of a given sample size n corresponds to a separate and independent
Monte Carlo experiment based on 10, 000 replications . A lag q of 0 corresponds to Mandelbrot's
classical R/S statistic, and a noninteger lag value indicates the mean lag (standard devia-
tion given in parentheses) chosen via Andre~~s' (1991) data-dependent procedure assuming an
AR(1) data-generating process . Standard errors for the empirical size may be computed using
the usual normal approximation : they are 9 .95 x 10-4 , 2.18 x 10 -~, and 3.00 x 10 - ~ fir
the 1 %, 5%, and 10% tests respectively .

n

	

q

	

Min

	

Max Mean S.D .
Size

	

Size

	

Size
1%-Test

	

5%-Test 10%-Test

100

	

0

	

0.534 2.284

	

1 .144 0.263

	

0.029

	

0.095

	

0.153

100

	

5

	

0.649

	

1 .913

	

1 .179

	

0.207

	

0.002

	

0.021

	

0.050

100

	

10

	

0.710

	

1 .877

	

1 .223

	

0.175

	

0.000

	

0.003

	

0.012

100

	

25

	

0.858

	

2.296

	

1 .383 0.186

	

0.001

	

0.014

	

0.039

100

	

50

	

0.918

	

3.119

	

1 .694 0.360

	

0.137

	

0.313

	

0.414

100

	

0.97

	

0.557

	

2.164

	

1 .150 0.247

	

0.019

	

0.070

	

0.127

(0.83)

250

	

0

	

0.496 2.527

	

1.183

	

0.270

	

0.021

	

0.075

	

0.133

250

	

5

	

0.580 2.283

	

1.196 0.243

	

0.008

	

0.041

	

0.089

250

	

10

	

0.654 2.048

	

1.211

	

0.221

	

0.003

	

0.021

	

0.054

250

	

25

	

0.757

	

1.905

	

1.264 0.176

	

0.000

	

0.001

	

0.006

250

	

50

	

0.877 2206 . 1 .372 0.169

	

0.000

	

0.005

	

0.020

250

	

0.97

	

0.497 2.442

	

1 .185

	

0.263

	

0.017

	

0.064

	

0.120

(0.83)

500

	

0

	

0.518

	

2.510

	

1 .201

	

0.267

	

0.015

	

0.061

	

0.117

500

	

5

	

0.589 2.357

	

1 .207 0.252

	

0.008

	

0.047

	

0.094

500

	

10

	

0.630 2.227

	

1.215 0.240

	

0.004

	

0.032

	

0.073

500

	

25

	

0.677 2.051

	

1 .240 0.210

	

0.000

	

0.008

	

0.029

500

	

50

	

0.709

	

1.922

	

1 .285 0.176

	

0.000

	

0.001

	

0.005

500

	

0.96

	

0.549

	

2.510

	

1 .202

	

0.263

	

0.014

	

0.057

	

0.112

(0.82)

750

	

0

	

0.558

	

2.699

	

1 .207 0.270

	

0.014

	

0.061

	

0.120

750

	

5

	

0.597 2.711

	

1 .212

	

0.260

	

0.009

	

0.049

	

0.101

750

	

10

	

0.615

	

2.553

	

1 .217 0.251

	

0.006

	

0.039

	

0.087

750

	

25

	

0.677 2.279

	

1 .235 0.228

	

0.001

	

0.017

	

0.052

750

	

50

	

0.758

	

1 .971

	

1 .266 0.198

	

0.000

	

0.002

	

0.015

750

	

0.96

	

0.558 2.670

	

1 .208 0.268

	

00.013

	

0.058

	

0.117

(0.83)

(continued)
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Table 6.Sa. (continued)

η

	

4 Min

	

Max Mean S.D .

	

Size

	

Size

	

Size
1 %-Test 5%-Test 10%-Test

1000

	

0

	

0.542 2.577 1 .211

	

0.270

	

0.014

	

0.059

	

0.113
1000

	

5

	

0.566 2.477 1 .214 0.262

	

0.011

	

0.051

	

0.103
1000

	

10

	

0.570 2.405 1 .218 0.256

	

0.008

	

0.045

	

0.089

1000 25 0.616 2.203 1 .231 0.237 0.003 0.025 0.061
1000 50 0.716 2 .036 1 .253 0.211 0.000 0.007 0.029
1000

	

0.96

	

0.549 2 .546 1 .212 0.268

	

0.012

	

0.056

	

0.111
(0.81)

6.5.2 Power Against Fractionally Differenced Alternatives

Tables 6.6a and b report the power of the R/S tests against the Gaussian
fractionally-differenced alternative :

( 1 - L) dει = ηt, η~ IID Ν(0, σή), (6.5 .2)

withd= Sand-3,and~~ =~ 2 (1-d)/~(1-2d)soastoyieldaunitvariance
for ~ t . For sample sizes of 100, tests based on Vn(q) have very little power,
but when the sample size reaches 250 the power increases dramatically.
According to Table 6 .6a, the power of the 5 percent testwith q = 5 against the
d = 3 alternative is 33.5 percentwith 250 observations, 62 .8 percentwith 500
observations, and 84 .6 percent with 1,000 observations . Although Andrews'
automatic truncation lag procedure is generally less powerful, its power is
sti1163 .0 percent for a sample size of 1,000. Also, the rejections are generally
in the right tail of the distribution, as the entries in the "Max" column
indicate . This is not surprising in light of Theorem 6 .3.3, which shows that
under this alternative the modified R/S statistic diverges in probability to
infinity.

For a fixed sample size, the power of the Vn (q)-based test declines as the
number of lags is increased . This ~s due to the denominator ~n (q), which
generally increases with q since there is positive dependence when d = 3 .
The increase in the denominator decreases the mean and variance of the
statistic, shifting the distribution towards the left and pulling probability
mass from both tails, thereby reducing the frequency of draws in the right
tail's critical region, where virtually all the power is coming from .

Against the d = - 3 alternative, Table 6 .6b shows that the test seems
to have somewhat higher power. However, in contrast to Table 6 .6a the
rejections are now coming from the left tail of the distribution, as Theorem
6.3.3 predicts. Although less powerful, tests based on Andrews' procedure
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Table 6.Sb . Finite sample distribution of the modified R/S statistic under an AR ( 1) null hy-
pothesis with autoregressive coefficient 0.5 . Each set of rows of a given sample size n corresponds
to a separate and independent Monte Carlo experiment based on 10, 000 replications . A lag q
of 0 corresponds to Mandelbrot 's classical R/S statistic, and a noninteger lag value indicates
the mean lag (standard deviation given in parentheses) chosen via Andrews' (1991) data-
dependent procedure, assuming an AR(1) data generating process. Standard errors for the
empirical size may be computed using the usual normal approximation ; they are 9 .95 x 10-4 ,
2.18 x 10-3 , and 3.00 x 10_ 3 for the 1 %, 5 %, and 10 % tests respectively.

η

	

4
Size

	

Size

	

Size
Min

	

Max Mean S.D . 1%-Test 5%-Test 10%-Test

100

	

0

	

0.764 3.418

	

1.764 0.402

	

0.203

	

0.382

	

0.486
100

	

5

	

0.634 1.862

	

1 .201

	

0.220

	

0.003

	

0.027

	

0.059
100

	

10

	

0.693 1.805

	

1 .178

	

0.176

	

0.000

	

0.010

	

0.030
100

	

25

	

0.779 2.111

	

1 .290

	

0.175

	

0.000

	

0.005

	

0.015
100

	

50

	

0.879 3.013

	

1 .571

	

0.341

	

0.074

	

0.198

	

0.284
100

	

5.61

	

0.636 1 .974

	

1 .195

	

0.219

	

0.004

	

0.028

	

0.063
(1 .25)

250

	

0

	

0.865 3.720

	

1 .913 0.432

	

0.309

	

0.505

	

0.614
250

	

5

	

0.597 2.478 1 .268 0.262

	

0.005

	

0.038

	

0.086
250

	

10

	

0.615 2.137

	

1.212 0.228

	

0.003

	

0.023

	

0.063
250

	

25

	

0.734 1.811

	

1.218

	

0.177

	

0.000

	

0.004

	

0.015
250

	

50

	

0.809 2.119 . 1 .304 0.166

	

0.000

	

0.003

	

0.010
250

	

8.07

	

0.603 2.357

	

1.227 0.242

	

0.004

	

0.030

	

0.071
( 1 .07)

500

	

0

	

0.836 4.392

	

1.980 0.456

	

0.363

	

0.559

	

0.665

500

	

5

	

0.622 2 .557

	

1.302 0.285

	

0.012

	

0.055

	

0.109
500

	

10

	

0.579 2.297 1.236 0.256

	

0.007

	

0.039

	

0.085
500

	

25

	

0.627 1 .980

	

1.214 0.215

	

0.001

	

0.015

	

0.041
500

	

50

	

0.734 1 .894

	

1 .243 0.178

	

0.000

	

0.002

	

0.009
500 10.40

	

0.577 2.353

	

1.236 0.256

	

0.007

	

0.039

	

0.085
(0.99)

750

	

0

	

0.839 4.211

	

2.017 0.459

	

0.389

	

0.592

	

0.696
750

	

5

	

0.567 2.637

	

1.323

	

0.291

	

0.011

	

0.062

	

0.118
750

	

10

	

0.557 2.429

	

1.253 0.265

	

0.007

	

0.043

	

0.091

750

	

25

	

0.614 2.114

	

1.222 0.232

	

0.003

	

0.022

	

0.058
750

	

50

	

0.702 1.891

	

1.235 0.200

	

0.000

	

0.005

	

0.022
750 12.03

	

0.556 2.324

	

1.244 0.260

	

0.007

	

0.041

	

0.088
(0.93)

(continued)
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Table 6.Sb . (continued)

η

	

q Min Max Mean S.D .
Size

	

Size

	

Size

1%-Test 5%-Test 10%-Test

1000 0 0.926 4.327 2.045 0.465 0.414 0.617 0.716
1000

	

5

	

0.625 2.768

	

1 .340 0.296

	

0.014

	

0.065

	

0.125
1000

	

10

	

0.592 2.622

	

1 .268 0.272

	

0.009

	

0.047

	

0.096
1000

	

25

	

0.608 2.350

	

1 .231

	

0.244

	

0.004

	

0.030

	

0.072

1000

	

50

	

0.636 1 .997

	

1 .236 0.217

	

0.001

	

0.011

	

0.038
1000 13.30

	

0.590 2.548

	

1 .252

	

0.265

	

0.008

	

0.043

	

0.090

(0.89)

still exhibit reasonable power, ranging from 33 .1 percent in samples of 100
observations to 94 .5 percent in samples of 1,000 .

For the larger sample sizes the power again declines as the number of
lags increases, due to the denominator ~n (q), which declines as q increases
because the population autocorrelations are all negative when d = -

3
. The

resulting increase in the mean of Un (q)'s sampling distribution overwhelms
the increase in its variability, leading to a lower rejection rate from the left
tail .

Table 6.6a and b shows that the modified R/S statistic has reasonable
power against at least two specific models of long-term memory. However,
these simulations are merely illustrative-a more conclusive study would in-
clude further simulations with several other values for d, and perhaps with
short-range dependence as we11 .23 Moreover, since our empirical work has

23 The very fact that the modified R/ S statistic yields few rejections under the null simulations
of Section 6 .5 .1 shows that the test may have low power against some long-raπge dependent
alternatives, since the pseudo-random number generator used in those simulations is, after
all, a long-range dependent process. A more striking example is the "tent" map, a particularly
simple nonlinear deterministic map (it has a correlation dimension of 1) which yields sequences
that are virtually uncorrelated but long-range dependent . In particular, the tent map is given
by the following recursion :

2X_ 1

	

if X~_~ < 1
X, -

	

~

	

t = I, . . ., T,

	

Xo E (0,1) .
2(1 - X~-~) ~ X~-~ ? 2,

As an illustration, we performed two Monte Carlo experiments using the tent map to generate
samples of 500 and 1,000 observations (each with 10,000 replications) with an independent
uniform (0,1) starting value for each replication . Neither the Mandelbrot rescaled range,
nor its modification with fixed or automatic truncation lags have any power against the tent
map. In fact, the finite sample distributions are quite close to the null distribution . Of course,
one could argue that if the dynamics and the initial condition were unknown, then even if a
deterministic system were generating the data, the resulting time series would be short-raπge
dependent "for all practical purposes" and should be part of our null . We are grateful to Lars
Hansen for suggesting this analysis.
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Table 6.6a. Power of the modified R/S statistic under a Gaussian fractionally differenced
alternative with differencing parameter d = 1/3 . The variance of the process has been nor-
malized to unity. Each set of rows of a gwen sample size n corresponds to a separate and
independent Monte Carlo experiment based on 10, 000 replications . A lag q of 0 corresponds to
Mandelbrot's classical R/S statistic, and a noninteger lag value indicates the mean lag (stan-
dard deviation given in parentheses) chosen via Andrews' (1991) data-dependent procedure
assuming an AR(1) data generating process .

Power

	

Power

	

Power
n

	

q

	

Min

	

Max Mean S.D .

	

1%-Test 5%-Test 10%-Test

100

	

0

	

0.729 4.047 2.025 0.513

	

0.429

	

0.600

	

0.680
100

	

5

	

0.635 2.089

	

1.361

	

0.242

	

0.001

	

0.014

	

0.065
100

	

10

	

0.686 1 .746

	

1 .237 0.171

	

0.000

	

0.005

	

0.015
100

	

25

	

0.723 2.148

	

1.208 0.156

	

0.000

	

0.002

	

0.008
100

	

50

	

0.823 2.803

	

1 .399 0.328

	

0.035

	

0.096

	

0.154
100

	

4.27

	

0.650 2.330

	

1 .411

	

0.257

	

0.003

	

0.040

	

0.104
(1.43)

250

	

0

	

0.938 5.563 2.678 0.709

	

0.774

	

0.878

	

0.918
250

	

5

	

0.713 2.924

	

1.699 0.364

	

0.153

	

0.335

	

0.442
250

	

10

	

0.705 2.304

	

1 .475 0.277

	

0.006

	

0.091

	

0.186
250

	

25

	

0.681

	

1 .852

	

1 .264 0.175

	

0.000

	

0.003

	

0.012
250

	

50

	

0.756 1.971

	

1.208 0.140

	

0.000

	

0.002

	

0.007
250

	

6.63

	

0.711

	

2.596

	

1 .619

	

0.317

	

0.067

	

0.240

	

0.360
(1 .36)

500

	

0

	

1 .061 7.243 3.336 0.929

	

0.924

	

0.967

	

0.980
500

	

5

	

0.731 3.726 2.055 0.491

	

0.450

	

0.628

	

0.709
500

	

10

	

0.692 2.944 1 .750 0.384

	

0.197

	

0.385

	

0.494
500

	

25

	

0.623 2.164

	

1 .429 0.258

	

0.001

	

0.045

	

0.123
500

	

50

	

0.687 1 .763

	

1 .271

	

0.178

	

0.000

	

0.003

	

0 .009
500

	

8.96

	

0.709 3.201

	

1 .809 0.384

	

0.242

	

0.447

	

0.557
(1 .37)

750

	

0

	

1 .228 8.059 3.799

	

1 .052

	

0.972

	

0.990

	

0.995
750

	

5

	

0.838 4.280 2.313 0.565

	

0.620

	

0.766

	

0 .830
750

	

10

	

0.769 3.421

	

1.955 0.447

	

0.370

	

0.557

	

0.655
750

	

25

	

0.734 2.478

	

1.569 0.310

	

0.042

	

0.195

	

0.304
750

	

50

	

0.722 1 .925

	

1 .359 0.223

	

0.000

	

0.005

	

0.036
750

	

10.58

	

0.798 3.324

	

1.942

	

0.421

	

0.363

	

0.559

	

0.657
(1.33)

1000

	

0

	

1 .398 8.615

	

4.174

	

1 .174

	

0.985

	

0.996

	

0.998
1000

	

5

	

0.898 4.672 2.521

	

0.635

	

0.720

	

0.846

	

0.892
1000

	

10

	

0.779 3.766 2.121

	

0.504

	

0.494

	

0.669

	

0.747
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Table 6.6a. (continued)

n

	

q

	

Min Max Mean S.D .

	

Power

	

Power

	

Power
1%-Test 5%-Test 10%-Test

1000

	

25

	

0.641 2.734

	

1 .686 0.354

	

0.135

	

0.322

	

0.431
1000

	

50

	

0.628 2.118

	

1 .441

	

0.259

	

0.001

	

0.052

	

0.138

1000 11.87

	

0.766 3.613 2.044 0.454

	

0.446

	

0.630

	

0.718
(1.31)

Table 6.6b . Power of the modified R/S statistic under a Gaussian fractionally differenced
alternative with differencing parameter d = -1/3 . The variance of the process has been
normalized to unity. Each set of rows of a given sample size n corresponds to a separate and
independent Monte Carlo experiment based on 10, 000 replications . A lag q of 0 corresponds to
Mandelbr~t's classical R/S statistic, and a noninteger lag value indicates the mean lag (stan-
dard deviation gwen in parentheses) chosen via Andrews' (1991) data-dependent procedure
assuming an AR (1) data-generating process.

η

	

4 Min Max Mean S.D.
Power

	

Power

	

Power
1%-Test 5%-Test 10%-Test

100

	

0

	

0.367 1.239 0.678 0.120

	

0.670

	

0.858

	

0.923
100

	

5

	

0.637 1.710

	

1.027 0.153

	

0.006

	

0.054

	

0.134
100

	

10

	

0.762 2.030

	

1.217 0.161

	

0.000

	

0.001

	

0.005
100

	

25

	

0.953 2.638

	

1.587 0.207

	

0.014

	

0.095

	

0.211
100

	

50

	

1 .052 3.478 2.033 0.354

	

0.425

	

0.679

	

0.785
100

	

2.94

	

0.478 1.621

	

0.889 0.155

	

0.131

	

0.331

	

0.466
(0.99)

250

	

0

	

0.303 1.014 0.561

	

0.089

	

0.951

	

0.991

	

Π.997
250

	

5

	

0.549 1.479 0.851

	

0.128

	

0.146

	

0.409

	

0.571

250

	

10

	

0.632 1.752

	

1.005

	

0.143

	

0.007

	

0.065

	

0.152
250

	

25

	

0.833 1.936

	

1.292 0.157

	

0.000

	

0.001

	

0.004
250

	

50

	

0.977 2.357 1.594 0.186

	

0.007

	

0.078

	

0.198
250

	

4.20

	

0.448 1 .437 0.796 0.129

	

0.301

	

0.578

	

0.716
(0.86)

500

	

0

	

0.292 0.819 0.479 0.071

	

0.997

	

1.000

	

1 .000
500

	

5

	

0.458 1 .244 0.728 0.105

	

0.517

	

0.794

	

0.888
500

	

10

	

0.555

	

1 .489 0.861

	

0.121

	

0.111

	

0.366

	

0.543
500

	

25

	

0.706 1 .735

	

1 .105 0.143

	

0.000

	

0.004

	

0.022
500

	

50

	

0.881

	

2.089

	

1.356 0.157

	

0.000

	

0.002

	

0.011
500

	

5.45

	

0.443 1 .318

	

0.725

	

0.108

	

0.529

	

0.793

	

0.887
(0.77)
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η

	

4

Table 6.6b . (continued)

Min Max Mean S.D .
Power

	

Power

	

Power
1%-Test 5%-Test 10%-Test

750

	

0

	

0.276 0.700 0.433 0.063

	

1 .000

	

1 .000

	

1 .000

750

	

5

	

0.422 1 .070 0.659 0.094

	

0.764

	

0.932

	

0.973
750

	

10

	

0.499 1 .262 0.779 0.109

	

0.325

	

0.641

	

0.789

750

	

25

	

0.689 1 .570

	

1 .001

	

0.132

	

0.003

	

0.049

	

0.138

750

	

50

	

0.837 1 .802

	

1 .227 0.148

	

0.000

	

0.000

	

0.002
750

	

6.34

	

0.424 1 .133 0.682 0.099

	

0.679

	

0.892

	

0.951
(0.73)

1000

	

0

	

0.257 0.775 0.403 0.057

	

1 .000

	

1 .000

	

1.000

1000

	

5

	

0.401

	

1.149 0.613 0.085

	

0.895

	

0.978

	

0.993

1000 10 0.487 1.376 0.725 0.099 0.525 0.809 0.907
1000 25 0.633 1.596 0.930 0.121 0.020 0.154 0.306
1000

	

50

	

0.778 1.820

	

1.139 0.139

	

0.000

	

0.000

	

0.006
1000

	

7.01

	

0.412

	

1 .235

	

0.651

	

0.092

	

0.789

	

0.945

	

0.978
(0.70)

employed data sampled at different frequencies (implying different values
of d for different sample sizes), the trade-off between the time span of the
data and the frequency of observation for the test's power may be an im-
portant issue . Nevertheless, the simulation results suggest that short-range
dependence may be the more significant feature of recent stock market
returns .

6.6 Conclusion

Using a simple modification of the Hurst-Mandelbrot rescaled range that
accounts for short-term dependence, and contrary to previous studies, we
find little evidence of long-term memory in historical U .S. stock market

returns. If the source of serial correlation is lagged adjustment to new
information, the absence of strong dependence in stock returns should
not be surprising from an economic standpoint, given the frequency with
which financial asset markets clear. Surely financial security prices must
be immune to persistent informational asymmetries, especially over longer
time spans. Perhaps the fluctuations of aggregate economic output are
more likely to display such long-run tendencies, as Kondratiev and Kuznets
have suggested, and this long-memory in output may eventually manifest
itself in the return to equity. But if some form of long-range dependence
is indeed present in stock returns, it will not be easily detected by any of
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Table 6.6b. (continued)

Power

	

Power

	

Power
n

	

q

	

Min

	

Max Mean S.D . 1%-Test 5%-Test 10%-Test

750

	

0

	

0.276 0.700 0.433 0.063

	

1 .000

	

1 .000

	

1.000
750

	

5

	

0.422 1.070 0.659 0.094

	

0.764

	

0.932

	

0.973
750

	

10

	

0.499 1 .262 0.779 0.109

	

0.325

	

0.641

	

0.789
750

	

25

	

0.689 1 .570

	

1 .001

	

0.132

	

0.003

	

0.049

	

0.138
750

	

50

	

0.837 1 .802 1 .227 0.148

	

0.000

	

0.000

	

0.002
750

	

6.34

	

0.424 1 .133 0.682 0.099

	

0.679

	

0.892

	

0.951
(0.73)

1000 0 0.257 0.775 0.403 0.057 1.000 1.000 1 .000
1000

	

5

	

0.401

	

1 .149 0.613 0.085

	

0.895

	

0.978

	

0.993
1000 10 0.487 1.376 0.725 0.099 0.525 0.809 0.907
1000 25 0.633 1.596 0.930 0.121 0.020 0.154 0.306
1000

	

50

	

0.778 1.820

	

1.139 0.139

	

0.000

	

0.000

	

0.006
1000

	

7.01

	

0.412 1.235 0.651

	

0.092

	

0.789

	

0.945

	

0.978
(0.70)

employed data sampled at different frequencies (implying different values
of d for different sample sizes), the trade-off between the time span of the
data and the frequency of observation for the test's power may be an im-
portant issue. Nevertheless, the simulation results suggest that short-range
dependence may be the more significant feature of recent stock market
returns .

6.6 Conclusion

Using a simple modification of the Hurst-Mandelbrot rescaled range that
accounts for short-term dependence, and contrary to previous studies, we
find little evidence of long-term memory in historical U .S. stock market
returns. If the source of serial correlation is lagged adjustment to new
information, the absence of strong dependence in stock returns should
not be surprising from an economic standpoint, given the frequency with
which financial asset markets clear. Surely financial security prices must
be immune to persistent informational asymmetries, especially over longer
time spans. Perhaps the fluctuations of aggregate economic output are
more likely to display such long-run tendencies, as Kondratiev and Kuznets
have suggested, and this long-memory in output may eventually manifest
itself in the return to equity. But if some form of long-range dependence
is indeed present in stock returns, it will not be easily detected by any of
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our current statistical tools, especially in view of the optimality of the R/S
statistic in the Mandelbrot and Wallis (1969b) sense . Direct estimation of
particular parametric models may provide more positive evidence of long-
term memory and is currently being pursued by several investigators . 24

24See, for example, Boes et al. (1989), Diebold and Rudebusch (1989), Fox and Taqqu
(1986), Geweke and Porter-Hudak (1983), Porter-Hudak (1990), Sowell (1989, 1990), and
Yajima (1985, 1988) .



Appendix A6
Proof of Theorems

Proofs of the theorems rely on the following three lemmas :

LemmaA.l (Herrndorf (1984)) . If {~ t } satisfies assumptions (A1)-(A4) then as
n increases without bound, Wn(~) ~ W(~) .

Lemma A.2 (Extended Continuous Mapping Theorem) . 25 Let hn and h be me~sur-
able mappings from D [0, 1 ] to itself and denote by E the set of x E D [0, 1 ] such that
hn (xn ) ~ h(x)failstoholdforsomesequencex n convergingtox. IfWn(~) ~ W(~)
and E is of Wiener-measure zero, i.e ., P(W E E) = 0, then h n(Wn) ~ h(W) .

Lemma A.3. Let R12 ~ R where both Rn and R have nonnegative support, and let

P(R - 0) = P(R = oo) = 0 . If an ~ oo, then anR,, ~ oo. If an ~ 0, then
ńanR„~0 .

Proof of Theorem 6 .3.1

Let Sn = ~~ t ~~ and define the following function Yn(~) on D[0, 1]

Yn(i) _ ~~ s[nil+

	

~ E [0, 1],

	

(A6.1)

where [n~] denotes the greatest integer less than or equal to n~, and ~
is defined in condition (A3) of the null hypothesis . By convention, set
Yn (0) __ 0 . Under conditions (Al), (A2'), (A3), and (A4) Herrndorf (1984)

2`'See Billingsley (1968) for a proof .
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has shown that Yn (~) ~ W(~) . But consider :

1

	

k

Max	~(X - X n )
1<_k<n ~n(q)~ j=1

= Max

	

Sk - -Sn

	

(A6.2a)
~<_~<n ~n(q)~

	

n

= Max Zn(~)

	

(A6.2ó)
o<~<~

where

Zn(~) _- Yn(~) -
Lnil

Yn (1) .

	

(Á6.2c)
n

Since the sequence of functions hn that map Yn(~) to Zn(~) satisfies the
conditions of Lemma A .2, where the limiting mapping h takes Yn (~) to
Yn(~) - ~Yn (1), it may be concluded that

hn ~Yn (~)~ = Zn(~) ~ h~W(~)~ = W(~) - ~W(1) = W° (~) . (A6.3)

If the estimator ~n(q) is substituted in place of ~ in the construction of Zn(~),
then under conditions (A2') and (A5) , Theorem 4.2 of Phillips (1987) shows
that (A3) still obtains . The rest of the theorem follows directlyfrom repeated
application of Lemma A.2 .

	

Q.E.D.

Proof of Theorem 6 .3.2

See Davydov (1970) and Taqqu (1975) .

Proof of Theorem 6 .3.3

Parts (6.3.3)-(6 .3 .3) follow directly from Theorem 6 .3.2 and Lemma A.2,
and part (6.3.3) follows immediately from Lemma A.3. Therefore, we need
only prove (6.3 .3) . Let H ~ (2, 1) so that y(k) ^~ k2H-2L(k) . This implies
that

Var[Sn ] ^~ n2HL(n) .

	

(A6.4)

Therefore, to show that ~ n ~ oo, it suffices to show that

n2~2i~n)
~ 0.

	

(A6.5)

Consider the population counterpart to (A6.5) :

~ (q)

	

_

	

1

	

2
2

	

4

n2x-~L(n)

	

n2~~-~L(n) ~E + 2~~j yj

	

(A6 .6)
j-~
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where ~~ = 1 - j/(q + 1) . Since by assumption ~~ ti j2a-2L(j), there exists

some integer qa and M > 0 such that for j > qQ , ~~ < Mj2x-2L(j) . Now
it is well known that a slowly-varying function satisfies the inequality j -~ <

L(j) < j~ for any ~ > 0 and j > qb, for some qb(~) . Choose ~ < 2 - 2H, and

observe that

which implies :

Ε
~2 (q)

	

σ2 (q)
η2χ-ι

	

η2χ-ι

yj < Mj2H-2jε

= η2χ-ι Ε

ΕΙσΈ - σ2Ι
η2Η-ι

2

	

4

+η2Η_ι Σω~ ΕΙΎ; - Υ;Ι

	

(A6.lOb)
~-ι

j > qo =_ max(ga , qb)

	

(Α6.7)

9

	

~

	

9
2Σ ω~ y, < 2Σ ω~ y, +2Μ Σ ω~ j2Η-2

+ε

	

(Α6.8)
~=ι

	

~=ι

	

~=~ο+ι

where, without loss of generality, we have assumed that q > qo . As q increases
without bound, the first sum of the right-side of (A6 .8) remains finite, and
the second sum may be bounded by observing that its summands are positive
and decreasing, hence (see, for example, Buck, 1978, Chapter 5 .5) :

2Μ ~ ω~ j2Η-2+ε < 2Μ l4 C1
- χ ~ χ2Η-2+ε dx (Α6.9α)

ί=~ο+ι

	

~ο

	

q+ 1

,~, Ο(g2Η-1+ε)

	

(A6.9b)

where the asymptotic equivalence follows by direct integration . If q ^~ O(n~)
where ~ E (0, 1), a weaker condition than required by our null hypothesis,
then the ratio ~2(q)/(n2~-~L(n)) is at most of order O(n~2~-~+~)(s-~>) which

converges to zero. If we can now show that (A6.6) and its sample counterpart
are equal in probability, then we are done . This is accomplished by the
following sequence of inequalities :

4

(~~ - σΕ)+2Σωj(Υj - Yj)
~-ι

(Á6.10a)
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<
Ε~σΈ

-
σ2~

yL2N-1

2

	

4

+ η
2χ-ι ~ ω~ JΕ(γ~ - y~) 2 .

	

(Α6.10ε)
j=1

But since Hosking (1984, Theorem 2) provides rates of convergence for sam-
ple auto-covariances of stationary Gaussian processes satisfying (6.3.14), an
integral evaluation similar to that in (Á6 .9a) shows that the sum in (Á6 .10c)
vanishes asymptotically when q ^~ o(n) . This completes the proof. Since the
proof for H E (0, 2 ) is similar, it is left to the reader .

	

Q.E.D.



Part II

THE FOCUS OF THE FIVE CHAPTERS in Part I has been the Random Walk
Hypothesis and the forecastability of asset returns through time . In the
three chapters of Part II, we shift our focus to questions of the predictability
of relative returns for a given time period. On average, is the return to one
stock or portfolio higher than the return to another stock or portfolio? If
the answer to this age-old question is yes, can we explain the difference,
perhaps through differences in risk?

These questions are central to financial economics since they bear di-
rectly on the trade-off between risk and expected return, one of the founding
pillars of modern financial theory . This theory suggests that lower risk in-
vestments such as bonds or utility stocks will yield lower returns on average
than riskier investments such airline or technology stocks, which accords
well with common business sense : investors require a greater incentive to
bear more risk, and this incentive manifests itself in higher expected returns .
The issue, then, is whether the profits of successful investment strategies can
be attributed to the presence of higher risks-if so, then the profits are com-
pensation for risk-bearing capacity and nothing unusual ; if not, then further
investigation is warranted .

Over the past three decades, a number of studies have reported so-called
anomalies, strategies that, when applied to historical data, lead to return dif-
ferences that are not easily explained by risk differences. For example, one
of the most enduring anomalies is the "size effect," the apparent excess
expected returns that accrue to stocks of small-capitalization companies-in
excess of their risks-which was first discovered by Banz (1981) . Rozeff and
Kinney (1976), Keim (1983), and Roll (1983) document a related anomaly:
small capitalization stocks tend to outperform large capitalization stocks
by a wide margin over the turn of the calendar year. Other well-known
anomalies include : the Value Line enigma (Copeland and Mayers, 1982) ;
the profitability of return-reversal strategies (DeBondt and Thaler, 1985;
Rosenberg, Reid, and Lanstein, 1985 ; Lehmann, 1990; Chopra, Lakon-

185



186

	

Part II

ishok, and Ritter, 1992) ; the underreaction to earnings announcements or
"post-earnings announcement drift" (Ball and Brown, 1968 ; Bernard and
Thomas, 1990) ; the relation between price/earnings ratios and expected
returns (Basu, 1977) ; the relation between book-value/market-value ratios
and expected returns (Fama and French, 1992) ; the volatility of orange juice
futures prices (Roll, 1984b) ; and calendar effects such as holiday, weekend,
and turn-0f-the-month seasonalities (Lakonishok and Smidt, 1988) .

In light of these anomalies, it is clear that we need a risk/reward bench-
mark to tell us how much risk is required for a given level of expected
return. In the academic jargon, we require an equilibrium asset-pricing
model. The workhorse asset-pricing model that virtually all anomaly studies
use to make risk adjustments is the Capital Asset Pricing Model (CAPM)
of Sharpe (1964) and Lintner (1965) . In the CAPM framework, an asset's
"beta" is the relevant measure of risk-stocks with higher betas should earn
higher returns on average . And in many of the recent anomaly studies, the
authors argue forcefully that differences in beta cannot fully explain the
magnitudes of return differences, hence the term "anomaly ."

There are many possible explanations for these anomalies, but most
of them fall neatly into two general categories : risk-based alternatives and
non-risk-based alternatives . Risk-based alternatives include the CAPM and
multifactor generalizations such as Ross's (1976) Arbitrage Pricing Theory
and Merton's (1973) Intertemporal CAPM, all developed under the assump-
tions of investor rationality and well-functioning capital markets . Among
these alternatives, the source of deviatións from the CAPM is omitted risk
factors, i .e ., the CAPΜ is an incomplete model of the risk/reward relation,
hence average return differences cannot be explained solely by the standard
CAPΜ betas .

Non-risk-based alternatives include statistical biases that might afflict
the empirical methods, the existence of market frictions and institutional
rigidities not captured b~ standard asset-pricing models, and explanations
based on investor irrationality and market inefficiency.

The heated debate among academics concerning the explanation for
the anomalies motivated our studies in chapters 7 and 8 . Chapter 7 provides
a general statistical framework to distinguish between the risk-based and
non-risk-based alternatives . The idea is to consider the overall risk/reward
trade-off implied by the anomaly and ask if it can be plausibly explained by
risk differences. We conclude that the magnitude of the expected return
differences is too large to be explained purley by differences in risk .

In Chapter 8 we turn to non-risk-based alternatives and focus specifi-
cally on statistical biases that arise from searching through the data until
something "interesting" is discovered . Anomalies obtained in this way are
hardly anomalous-they are merely manifestations of data-snooping biases,
spurious statistical artifacts that are due to random chance . For example, a
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typical adult individual in the United States is unlikely to be taller than 6'5",
hence the average height in a random sample of individuals is probably less
than 6'5" . However, if we construct our sample by searching for the tallest
individuals in a given population-by focusing our attention only on pro-
fessional basketball players, for example-then the aυerage height in this
biased sample may well exceed 6'5" . This comes as no surprise because we
searched over the population for "tallness," and the fact that the average
height in this sample is greater than 6'5" does not imply that heights are
increasing in the general population .

In much the same way, searching through historical data for superior in-
vestment performance may well yield superior performance, but this need
not be evidence of genuine performance ability. Even in the absence of
superior performance abilities, with a large enough dataset and a suffi-
ciently diligent search process, spurious superior performance can almost
always be found . While such biases are unavoidable in non-experimental
disciplines such as financial economics, acknowledging this possibility and
understanding the statistical properties of these biases can go a long way
towards reducing their effects .

In Chapter 8, we provide a formal analysis of this phenomenon in the
context of linear factor models, and show that even small amounts of data-
snooping can lead to very large spurious differences in return performance .
Because with hindsight one can almost always "discover" return differences
that appear large, it is critical to account for this effect by modifying the
standard statistical procedures appropriately and we propose one method
for doing so .

Having explored the "downside" of data-snooping-finding superior
performance when none exists-we consider the "upside" in Chapter 9,
in which we maximize predictability directly by constructing portfolios of
stocks and bonds in a very particular manner. Many financial economists
and investment professionals have undertaken the search for predictability
in earnest and with great vigor. But as important as it is, predictability is
rarely maximized systematically in empirical investigations, even though it
may dictate the course of the investigation at many critical junctures and,
as a consequence, is maximized implicitly over time and over sequences of
investigations .

In Chapter 9, we maximize the predictability in asset returns explicitly
by constructing portfolios of assets that are the most predictable in a time-
series context . Such explicit maximization can add several new insights to
findings based on less formal methods . Perhaps the most obvious is that
it yields an upper bound to what even the most industrious investigator
will achieve in his search for predictability among portfolios (how lárge can
data-snooping biases be?) . As such, it provides an informal yardstick against
which other findings may be measured . For example, the results in Part I
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imply that approximately 10% of the variation in the CRSP equal-weighted
weekly return index from 1962 to 1985 can be explained by the previous
week's returns-is this large or small? The answer will depend on whether
the maximum predictability for weekly portfolio returns is 15% or 75% .

The maximization of predictability can also direct us towards more dis-
aggregated sources of persistence and time-variation in asset returns, in the
form of portfolio weights of the most predictable portfolio, and sensitivities
of those weights to specific predictors, e.g ., industrial production, dividend
yield, etc . A primitive example of this kind of disaggregation is the lead/lag
relation among size-sorted portfolios we documented in Chapter 5, in which
the predictability of weekly stock index returns is traced to the tendency for
the returns of larger capitalization stocks to lead those of smaller stocks . The
more general framework of Chapter 9 includes lead/lag effects as a special
case, but captures predictability explicitly as a function of time-varying eco-
nomic risk premia rather than as a function of past returns only .

More importantly, maximizing predictability may be a better alterna-
tive than the current two-step procedure for exploiting predictabilities in
asset returns : (1) construct a linear factor model of returns based on cross-
sectional explanatory power, e.g., factor analysis, principal components de-
composition, etc .; and (2) analyze the predictability of these factors . This
two-step approach is motivated by the risk-based alternatives literature we
alluded to earlier : the CAPM and ICAPM, the APT, and their many vari-
ants in which expected returns are linearly related to contemporaneous
"systematic" risk factors .

While the two-step approach can shed considerable light on the nature
of asset-return predictability-especially when the risk factors are known-it
may not be as informative when the factors are unknown . For example, it is
possible that the set of factors which best explain the cross-sectional varia-
tion in expected returns are relatively unpredictable through time, whereas
other factors that can be used to predict expected returns are not nearly as
useful contemporaneously in capturing the cross-sectional variation of ex-
pected returns. Therefore, focusing on the predictability of factors which
are important contemporaneously may yield a very misleading picture of
the true nature of predictability in asset returns . The approach in Chapter
9 offers an alternative in which predictability is maximized directly .

Taken together, the chapters in Part II present a more detailed analysis
of the sources and nature of predictability in the stock and bond markets,
providing the statistical machinery to differentiate between risk-based and
non-risk-based explanations of asset-pricing anomalies, to quantify and con-
trol for the impact of data-snooping biases, and to exploit more fully the
genuine predictabilities that might be present in the data .



7
Multifactor Models Do Not Explain

Deviations from the CAPM

7.1 Introduction

ONE OF THE IMPORTANT PROBLEMS of modern financial economics is the
quantification of the tradeoff between risk and expected return . Although
common sense suggests that investments free of risk will generally yield lower
returns than riskier investments such as the stock market, it was only with the
development of the Sharpe-Lintner capital asset pricing model (CAPM) that
economists were able to quantify these differences in returns . In particular,
the CAPM shows that the cross-section of expected excess returns of financial
assets must be linearly related to the market betas, with an intercept of zero .
Because of the practical importance of this risk-return relation, it has been
empirically examined in numerous studies . Over the past fifteen years,
a number of studies have presented evidence that contradict the CAPM,
statistically rejecting the hypothesis that the intercept of a regression of
excess returns on the excess return of the market is zero .

The apparent violations of the CAPM have spawned research into pos-
sible explanations . In this chapter, the explanations will be divided into
two categories : risk-based alternatives and nonrisk-based alternatives . The
risk-based category includes multifactor asset pricing models developed un-
der the assumptions of investor rationality and perfect capital markets . For
this category, the source of deviations from the CAPM is either missing risk
factors or the misidentification of the market portfolio as in Roll (1977) .

The nonrisk-based category includes biases introduced in the empiri-
cal methodology, the existence of market frictions, or explanations arising
from the presence of irrational investors. Examples are data-snooping bi-
ases, biases in computing returns, transaction costs and liquidity effects,
and market inefficiencies . Although some of these explanations contain
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elements of risk, the elements of risk are different than those associated
with perfect capital markets .

The empirical finding that the intercepts of the CAPM deviate statisti-
cally from zero has naturally led to the empirical examination of multifactor
asset pricing models motivated by the arbitrage pricing theory (APT) de-
veloped by Ross (1976) and the intertemporal capital asset pricing model
(ICAPM) developed by Merton (1973) (see Fama, 1993, for a detailed dis-
cussion of these multifactor model theories) . The basic approach has been
to introduce additional factors in the form of excess returns on traded port-
folios and then reexamine the zero-intercept hypothesis . Fama and French
(1993) use this approach and document that the estimates of the CAPM
intercepts deviate from zero for portfolios formed on the basis of the ra-
tio of book value to market value of equity as well as for portfolios formed
based on market capitalization .' On finding that the intercepts for these
portfolios with a three-factor model are closer to zero, they conclude that
missing risk factors in the CAPM are the source of the deviations . They go
on to advocate the use of a multifactor model, stating that, with respect to
the use of the Sharpe-Lintner CAPM, their results "should help to break this
common habit" (p. 44) .

However, the conclusion that additional risk factors are required may
be premature. One of several explanations consistent with the presence of
deviations is data-snooping, as presented in Lo and MacKinlay (1990) . The
argument is that on an ex post basis one will always be able to find devia-
tions from the CAPM. Such deviations considered in a group will appear
statistically significant . However, they are merely a result of grouping assets
with common disturbance terms. Since in financial economics our empir-
ical analysis is ex post in nature, this problem is difficult to control . Direct
adjustments for potential snooping are difficult to implement and, when
implemented, make it very difficult to find real deviations .

While it is generally difficult to quantify and adjust for the effects of
data-snooping biases, there are some related biases that can be examined .
One such case pursued by Kothari, Shanken, and Sloan (1995) is sample
selection bias . The authors show that significant biases can arise in academic
research when the analysis is conditioned on the assets appearing in both the
Center for Research in Security Prices (CRSP) database and the Compustat
database. Their analysis suggests that deviations from the CAPM such as
those documented by Fama and French (1993) can be explained by sample
selection biases. Breen and Korajczyk (1993) provide further evidence on
selection biases that supports the Kothari, Shanken, and Sloan conclusion .

'Fama and French are also concerned with the observation that the relation between
average returns and market betas is weak. Although not addressed here, this point has been
addressed in a number of recent papers, including Chan and Lakonishok (1993), Kandel and
Stambaugh (1995), Kothari, Shanken, and Sloan (1995), and Roll and Ross (1994) .
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Other researchers interpret the deviations from the CAPM as indica-
tions of the presence of irrational behavior by market participants (e.g.,
DeBondt and Thaler, 1985) . A number of theories have been developed
that are consistent with this line of thought. A recent example is the work of
Lakonishok, Shleifer, and Vishny (1994) who argue that the deviations arise
from investors following naive strategies, such as extrapolating past growth
rates too far into the future, assuming a trend in stock prices, overreacting
to good or bad news, or preferring to invest in firms with a high level of prof-
itability. With this alternative the possibility of nonzero intercepts arises not
only from missing risk factors but also from specific firm characteristics .

Conrad and Kaul (1993) consider the possibility that biases in com-
puted returns explain the deviations . They find that the implicit portfolio
rebalancing in most analyses biases measured returns upwards, leading to
overstated returns and CAPM deviations . This problem will be most se-
vere for tests using frequently rebalanced portfolios and short observation
intervals .

Finally, market frictions and liquidity effects could induce a nonzero
intercept in the CAPM tests . Since the model is developed in a perfect mar-
ket, such effects are not accommodated . Amihud and Mendelson (1986)
present some evidence of returns containing effects from market frictions
and demands for liquidity .

The controversy over whether or not the CAPM deviations are due to
missing risk factors flourishes because empirically it is hard to distinguish
between the various hypotheses . On an ex post basis, one can always find a set
of risk factors that will make the asset pricing model intercept zero . Without
a specific theory identifying the risk factors, one will always be able to explain
the cross-section of expected returns with a multifactor asset pricing model,
even if the real explanation lies in one of the nonrisk-based categories .

Although it is difficult to distinguish between the risk-based and nonrisk-
based categories, the practical implications of the distinction are important .
For example, if the risk-based explanation is correct, then cost of capital cal-
culations using the CAPM can be badly misspecified. A better approach
would be to use a multifactor model that captures the missing risk factors .
On the other hand, if the deviations are a result of the nonrisk-based expla-
nations, then disposing of the CAPM in favor of a multifactor model may
lead to serious errors. The cost of capital estimate from a multifactor model
can be very different than the estimate from the CAPM .

In this chapter, we discriminate between the risk-based and the nonrisk-
based explanations using ex ante analysis. The objective is to evaluate the
plausibility of the argument that the deviations from the CAPM can be ex-
plained by additional risk factors . We argue that one should expect ex ante
that CAPM deviations due to missing risk factors will be very difficult to detect
because the deviation in expected return is also accompanied by increased
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variance . We formally analyze the issue using mean-variance efficient set
mathematics in conjunction with the zero-intercept F-test presented in Gib-
bons, Ross, and Shanken (1989) and MacKinlay (1987) . The difficulty exists
because when deviations from the CAPM or other multifactor pricing mod-
els are the result of omitted risk factors, there is an upper limit on the
distance between the null distribution of the test statistic and the alternative
distribution . With the nonrisk-based alternatives, for which the source of
the deviations is something other than missing factors, no such limit exists
because the deviations need not be linked to the variances and covariances .

The chapter also draws on a related distinction between the two cat-
egories, namely the difference in the behavior of the maximum squared
Sharpe measure as the cross-section of securities is increased . (The Sharpe
measure is the ratio of the mean excess return to the standard deviation of
the excess return .) For the risk-based alternatives the maximum squared
Sharpe measure is bounded, and for the nonrisk-based alternatives the maxi-
mum squared Sharpe measure is a less useful construct and can, in principle,
be unbounded .

The results of the chapter underscore the important role that economic
analysis plays in distinguishing among different pricing models for the rela-
tion between risk and return . In the absence of specific alternative theories,
and without very long time series of data, one is limited in what can be said
about risk-return relations among financial securities .

The chapter proceeds as follows . In Section 2 the framework for the
analysis is presented and the optimal orthogonal portfolio is defined. This
portfolio will play a key role in the arguments of the chapter . Many of the
results in the chapter can be related to the values of the squared Sharpe
measure for relevant portfolios . In Section 3 the relations between the
parameters of the returns and the Sharpe measures are presented . Section
4 develops the implications relating to the controversy over missing risk
factors. Theoretically, the framework used to distinguish between risk-based
and nonrisk-based explanations assumes a large number of assets. Section
5 illustrates that the usefulness of the framework does not depend on this
assumption. The chapter concludes with Section 6.

7.2 Linear Pricing Models , Mean-Variance Analysis,
and the Optimal Orthogonal Portfolio

We begin by specifying the distributional properties of excess returns for N
primary assets in the economy . Let z t represent the N x 1 vector of excess
returns for period t. Assume zt is stationary and ergodic with mean μΡ and
a covariance matrix V that is full rank. Given these assumptions for any
set of factor portfolios, a linear relation between the excess returns and the
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portfolios' excess returns results . The relation can be expressed as

z~ _ ~ + Bzpt + ~~,

	

(7.2.1)

E[~il = ~,

	

(7.2.2)

E[~t~r'l = ~,

	

(7.2.3)

Ef~tl = N-p, E~(~t - ~p)(~~ - ~ρ)~l = ~p,

	

(7 .2.4)

Cov[z~~ > F~~ = 0 •

	

(7.2 .5)

B is the N x K matrix of factor loadings, z~i is the K x 1 vector of time-

t factor portfolio excess returns, and ~ and ~~ are N x 1 vectors of asset
return intercepts and disturbances, respectively . The values of ~, B, and
~ will depend on the factor portfolios . This dependence is suppressed for

notational convenience .
It is well-known that all of the elements of the vector ~ will be zero if

a linear combination of the factor portfolios forms the tangency portfolio
(i .e ., the mean-variance efficient portfolio of risky assets given the presence
of a risk-free asset) . Let z q ~ be the excess return of the (ex ante) tangency

portfolio and let xq be the N x 1 vector of portfolio weights . Here, and
throughout the chapter, let ~ represent a conforming vector of ones . From
mean-variance analysis :

xq = (~~ V-i ~) -t V-t ~ •

	

(7.2 .6)

In the context of our previous discussion, the asset pricing model will be
considered well-specified when the tangency portfolio can be formed from
a linear combination of the K-factor portfolios .

Our interest is in formally developing the relation between the devia-
tions from the asset pricing model, ~, and the residual covariance matrix ~
when a linear combination of the factor portfolios does not form the tan-
gency portfolio. To facilitate this we define the optimal orthogonal portfolio,2
which is the unique portfolio given N assets that can be combined with the
factor portfolios to form the tangency portfolio and is orthogonal to the
factor portfolios .

Take as given K-factor portfolios which cannot be combined to form the
tangency portfolio or the global minimum variance portfolio . A portfolio

2See Roll (1980) for properties of orthogonal portfolios in a general context and Lehmann
(1987, 1988, 1992) for discussions of the role of orthogonal portfolios in asset pricing tests .
Also related is the orthogonal factor employed in MacKinlay (1987), the active portfolio con-
sidered by Gibbons, Ross, and Shanken (1989), and the modifying payoff used in Hansen and
Jagannathan (1997) .
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h will be defined as the optimal orthogonal portfolio with respect to these
K-factor portfolios ~f

χ4 = Χρω + χh(1 - ί ω),

	

(7.2.7)

χ'h VXp = 0,

	

(7.2.8)

for a K x 1 vector ~, where is the N x K matrix of asset weights for the factor
portfolios, xh is the N x 1 vector of asset weights for the optimal orthogonal
portfolio, and xy is the N x 1 vector of assetweights for the tangency portfolio .
If one considers a model without any factor portfolios (K = 0), then the
optimal orthogonal portfolio will be the tangency portfolio .

The weights of portfolio h can be expressed in terms of the parameters
of the K-factor model . For the vector of weights,

xh = (~~V-~~)-iV-i« _ (~~~t
«)_i~t

«,

	

(7.2.9)

where the t superscript indicates the generalized inverse . The usefulness of
this portfolio comes from the fact that when added to (7 .2.1) the intercept
will vanish and the factor-loading matrix B will not be altered . The optimality
restriction in (7 .2.7) leads to the intercept vanishing, and the orthogonality
condition in (7 .2 .8) leads to B being unchanged . Adding in zhr :

xi = Bzp~ + /g~~zh~ ~- u i ,

	

(7.2.10)

E[ut ] = 0,

	

(7.2.11)

E[u~u~ ] _ ~,

	

(7.2.12)

E[zh~] _ l.~h,

	

E[(zh~ - l-ßh)2 ] _ ~h,

	

('%.2.13)

Cov[zp~, u t ] = 0,

	

(7.2.14)

Cov[zht , ur ] = 0 . (7.2.15)

The link results from comparing (7 .2.1) and (7.2.10) . Taking the uncondi-
tional expectations of both sides,

~ = ßh~h,

	

(7.2.16)

and by equating the variance of ~~ with the variance of ß hzht -F ut :

2
~~ = ßhßho"h + ~ _ ~ «~

U2
+ ~ .

	

(7.2.17)
~h

The key link between the model deviations and the residual variances and
covariances emerges from (7 .2.17) . The intuition for the link is straight-
forward. Deviations from the model must be accompanied by a common
component in the residual variance to prevent the formation of a portfolio
with a positive deviation and a residual variance that decreases to zero as the
number of securities in the portfolio grows . When the link is not present
(i .e ., the link is undone by ~), asymptotic arbitrage opportunities will exist .
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7.3 Squared Sharpe Measures

The squared Sharpe measure is a useful construct for interpreting much of
the ensuing analysis . The Sharpe measure for a given portfolio is calculated
by dividing the mean excess return by the standard deviation of return . It
is well-known that the tangency portfolio q will have the maximum squared
Sharpe measure of all portfolios . 3 The squared Sharpe measure of q, s9, is

sq = ~'V-lμ .

	

(7.3.1)

Since the K-factor portfolios p and the optimal orthogonal portfolio h can
be combined to form the tangency portfolio, it follows that the maximum
squared Sharpe measure of these K + 1 portfolios will be s9 . Since h is
orthogonal to the portfolios p, one can express s9 as the sum of the squared
Sharpe measure of the orthogonal portfolio and the squared maximum
Sharpe measure of the factor portfolios,

Sq = Sh + Sp , (7.3 .2)

where sh = ~h/~h and sp = ~~~p ~~~ .
In applications we will be employing subsets of the N assets . The factor

portfolios need not be linear combinations of the subset of assets . Results
similar to those above will hold within a subset of N assets . For the subset
analysis when considering the tangency portfolio (of the subset), the max-
imum squared Sharpe measure of the assets and factor portfolios, and the
optimal orthogonal portfolio for the subset, it is necessary to augment the
N assets with the factor portfolios p. Defining zi as the N + K x 1 vector
[z'~ zpt ]' with mean ~s' and covariance matrix VS*, for the tangency portfolio
of these N + K assets :

s9 = μ5'V
*-ιμs .

	

(7 .3.3)

The subscript s indicates that a subset of the assets is being considered . If
any combination of the factor portfolios is a linear combination of the N
assets, it will be necessary to use the generalized inverse in (7.3 .3) .

As we shall see, the analysis (with a subset of assets) will involve the
quadratic ~'~ -lam computed using the parameters for the N assets . Gib-
bons, Ross, and Shanken (1989) and Lehmann (1988, 1992) provide inter-
pretations of this quadratic term in terms of Sharpe measures . Assuming ~

3See Jobson and Korkie (1982) for a development of this point and a performance mea-
surement application . The existence of a maximum Sharpe measure as the number of assets
becomes large is central to the arbitrage pricing theory . For further discussion see Chamberlain
and Rothschild (1983) and Ingersoll (1984) .
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is of full rank (if ~ is singular then one must use the generalized inverse),
they show

asΣs ta s =

	

- sp .

	

(7.3.4)

Consistent with (7.3 .2), for the subset of assets a'~ -l ax will be the squared
Sharpe measure of the subset's optimal orthogonal portfolio h s . Therefore,
for a given subset of assets :

= α=Σs i a s , (7.3 .5)

sq = shs + sp .

	

(7.3.6)

Also note that the squared Sharpe measure of the subset's optimal orthogo-
nal portfolio is less than or equal to that of the population optimal orthog-
onal portfolio :

sh < sh .

	

(7.3 .7)

Next we use the optimal orthogonal portfolio and the Sharpe measure
results together with the model deviation residual variance link to develop
implications for distinguishing among asset pricing models . Hereafter we
will suppress the s subscript. No ambiguitywill result since, in the subsequent
analysis, we will be working only with subsets of the assets .

7.4 Implications for Risk-Based Versus Nonr~sk-Based Alternatwes

Many asset pricing model tests involve testing the null hypothesis that the
model intercept is zero using tests in the spirit of the zero-intercept F-test .¢
A common conclusion is that rejection of this hypothesis using one or more
factor portfolios shows that more risk factors are required to explain the
risk-return relation, leading to the inclusion of additional factors so that
the null hypothesis will be accepted (Fama and French, 1993, adopt this
approach) . A shortcoming of this approach is that there are multiple po-
tential interpretations of why the hypothesis is accepted . One view is that
genuine progress in terms of identifying the "right" asset pricing model has
been made. However, the apparent success in identifying a better model
may also have come from finding a good within-sample fit through data-
snooping. The likelihood of this possibility is increased by the fact that the
additional factors lack theoretical motivation .

¢ Examples of tests of this type include Campbell (1987), Connor and Korajczγk (1988),
Fama and French (1993), Gibbons, Ross, and Shanken (1989), Huberman, Kandel, and Stam-
baugh (1987), Kandel and Stambaugh (1990), Lehmann and Modest (1988), and MacKinlay
(1987) . The arguments in the chapter can also be related to the zero-beta ~,APM tests in
Gibbons (1982), Shanken (1985), and Stambaugh (1982) .
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This section integrates the link between the pricing model intercept and
the residual covariance matrix of (7 .2.17) and the squared Sharpe measure
results with the distribution theory for the zero-intercept F-test to discrim-
inate between the two interpretations . We consider two approaches. The
first approach is a testing approach that compares the null hypothesis test
statistic distribution with the distribution under each of the alternatives .
The second approach is estimation-based, drawing on the squared Sharpe
measure analysis to develop estimators for the squared Sharpe measure of
the optimal orthgonal portfolio . Before presenting the two approaches, the
zero-intercept F-test is summarized .

7.4.1 Zerο Intercept F-Test

To implement the F-test, the additional assumption that excess asset returns
are jointly normal and temporally independently and identically distributed
is added. This assumption, though restrictive, buys us exact finite sample
distributional results, thereby simplifying the analysis . However, ~t is impor-
tant to note that this assumption is not central to the point ; similar results
will hold under much weaker assumptions . Using a generalized method of
moments approach, MacKinlay and Richardson (1991) present a more gen-
eral test statistic that has asymptotically a chi-square distribution . Analysis
similar to that presented for the F-test holds for this general statistic .

We begin with a summary of the zero-intercept F-test of the null hy-
pothesis that the intercept vector ~ from (7.2 .1) is zero . Let Ho be the null
hypothesis and H a be the alternative :

H~: ~ = 0

	

(7.4.1)

Ha : ~ ~ 0.

	

(7.4.2)

H~ can be tested using the following test statistic :

~~ = L(T - N - K)/Nl ~l + ~p~p tip]-i~'~-ice,

	

(7.4.3)

where T is the number of time series observations, N is the number of assets
or portfolios of assets included, and K is the number of factor portfolios . The
hat superscripts indicate the maximum likelihood estimators . Under the
null hypothesis, ~~ is unconditionally distributed central F with N degrees
of freedom in the numerator and T - N - K degrees of freedom in the
denominator.

The distribution of ~~ can also be characterized in general . Conditional
on the factor portfolio excess returns, the distribution of ~~ is

~~ ^' FN,r-N-~(~),

	

(7.4.4)

~ = T[1+~p~pi~p]-i~'~-i~,

	

(7.4.5)
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where ~ is the noncentrality parameter of the F distribution . If K = 0, then

the term [1-~ ~p~p l ip] -t will not appear in (7.4 .3) or in (7.4 .5) and ~l will
be unconditionally distributed noncentral F.

7.4.2 Testing Approach

In this approach we consider the distribution of ~l under two different
alternatives. The alternatives can be separated by their implications for
the maximum value of the squared Sharpe measure . With the risk-based
multifactor alternative there will be an upper bound on the squared Sharpe
measure, whereas with the nonrisk-based alternatives the maximum squared
Sharpe measure can be unbounded (as the number of assets increases) .

First we consider the distribution of ~l under the alternative hypothesis
when deviations are due to missing factors . Drawing on the results for the
squared Sharpe measures, the noncentrality parameter of the F distribution
is

~ = T [1 + ~p~pt ip]
-t

sh~ •

	

(7.4.6)

From (7.3.7), the third term in (7.4 .6) is positive and bounded above by sh .

The second term is bounded between zero and one . Thus there is an upper

bound for ~,
~ < Tsh < Ts4 .

	

(7.4.7)

The second inequality follows from the fact that the tangency portfolio q
has the maximum Sharpe measure of any asset or portfolio . 5

Given a maximum value for the squared Sharpe measure, the upper
bound on the noncentrality parameter can be important. With this bound,
independent of how one arranges the assets to be included as dependent
variables in the pricing model regression and for any value of N, there is
a limit on the distance between the null distribution and the distribution
when the alternative is missing factors . (In practice, when using the F-test

it will be necessary for N to be less than T - K so that ~ wül be of full

rank . ) All the assets can be mispriced and yet the bound will still apply. As a

consequence, one should be cautious in interpreting rejections of the zero
intercept as evidence in favor of a model with more risk factors .

In contrast, when the source of nonzero intercepts is nonrisk-based,
such as data-snooping, market frictions, or market irrationalities, the notion
of a maximum squared Sharpe measure is not useful. The squared Sharpe
measure (and the noncentrality parameter) are in principle unbounded
because the argument linking the deviations and the residual variances and

SThe first half of this bound appears in MacKinlay (1987) for the case of the Sharpe-
Lintner cAPM. Related results appear in Kandel and Stambaugh (1987), Shanken (1987b),
and Hansen andJagannathan (1991) .
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covariances does not apply. When comparing alternatives with the intercepts
of about the same magnitude, in general, one would expect to see larger
test statistics in this nonrisk-based case .

One can examine the potential usefulness of the above analysis by con-
sidering alternatives with realistic parameter values . We construct the dis-
tribution of the test statistic for three cases : the null hypothesis, the missing
risk factors alternative, and the nonrisk-based alternative . For the risk-based
alternative, we draw on a framework designed to be similar to that in Fama
and French (1993) . For the nonrisk-based alternative we use a setup that
is consistent with the analysis of Lo and MacKinlay (1990) and the work of
Lakonishok, Shleifer, and Vishny (1994) .

Consider a one-factor asset pricing model using a time series of the
excess returns for 32 portfolios for the dependent variable . The one factor
(independent variable) is the excess return of the market so that the zero-
intercept null hypothesis is the CAPM . The length of the time series is 342
months. This setup corresponds to that of Fama and French (1993, Table
9, regression ü) . The null distribution of the test statistic ~l is

Θ1
r .. F32,309(~) .

	

(7.4.8)

To define the distribution of ~l under the risk-based and nonrisk-based
alternatives one needs to specify the parameters necessary to calculate the
noncentrality parameter. For the risk-based alternative, given a value for the
squared Sharpe measure of the optimal orthogonal portfolio, the distribu-
tion corresponding to the upper bound of the noncentrality parameter from
(7.4.7) can be considered. The Sharpe measure of the optimal orthogonal
portfolio can be obtained using (7.3 .2) given the squared Sharpe measures
of the tangency portfolio and of the included factor portfolio. Our view is
that in a perfect capital markets setting, a reasonable value for the squared
Sharpe measure of the tangency portfolio for an observation interval of one
month is 0.031 (or approximately 0.6 for the Sharpe measure on an annu-
alized basis) . This value, for example, corresponds to a portfolio with an
annual expected excess return of 10% and a standard deviation of 16% .
If the maximum squared Sharpe measure of the included factor portfolios
is the ex post squared Sharpe measure of the CRSP value-weighted index,
the implied maximum squared Sharpe measure for the optimal orthogonal
portfolio is 0 .021 . This monthly value of 0 .021 would be consistent with a
portfolio which has an annualized mean excess return of 8% and annualized
standard deviation of 16% .

The selection of the above Sharpe measure can be rationalized both the-
oretically and empirically. For theoretical justification we consider Sharpe
measures of equity returns in the literature examining the equity risk pre-
mium puzzle (see Mehra and Prescott, 1985) . While the focus of this re-
search does not concern the Sharpe measure, that measure can be calculated
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from the analysis provided by Cecchetti and Mark (1990) and Kandel and
Stambaugh (1991) . Both papers are informative for the question at hand
since they do not assume any imperfections in the asset markets. If their
models, with reasonable parameters, imply Sharpe measures that are higher
than the value selected for use in this chapter, the value selected here should
perhaps be reconsidered. However, one should not completely rely on the
measures from these papers for justification. In the presented models the
aggregate equity portfolio generally will not be mean-variance efficient and
therefore need not have the highest Sharpe measure of all equity portfolios .

Common to the papers is the use of a representative agent framework
and a Markov switching model for the consumption process . The param-
eters of the consumption process are chosen to match estimates from the
data. Cecchetti and Mark, using the standard time-separable constant rel-
ative risk aversion utility function, specify a range of values for the time
preference parameter and the risk aversion coefficient . For each pair of val-
ues they generate the implied theoretical unconditional mean and standard
deviation of the equity risk premium from which the Sharpe measures can
be calculated . The annualized Sharpe measures range from 0 .08 to 0 .16,
substantially below the value of 0 .60 suggested above .

Kandel and Stambaugh allow for more general preferences . For the
representative agent, a class is used that allows separation of the effects of
risk aversion and intertemporal substitution . The standard time-separable
model is a special case with the elasticity of intertemporal substitution equal
to the inverse of the risk aversion coefficient . They set the monthly rate
of time preference at 0.9978 and consider 16 pairs of the risk aversion co-
efficient and the intertemporal substitution parameter . The risk aversion
coefficient varies from 2 to 29 and the intertemporal substitution parameter

varies from 29 to 2. For thirteen of the sixteen cases the annual Sharpe mea-
sure of equity is less than 0 .6. The three cases where the Sharpe measure is
greater than 0.6 seem implausible since they imply the equity risk premium
and the interest rate have almost the same variance, an impliciation which
is strongly contradicted by historical data . These are the cases with high val-
ues for both the risk aversion parameter and the intertemporal substitution
parameter. In aggregate, the results in these papers are consistent with the
value specified for the maximum squared Sharpe measure in the context of
frictionless asset markets .

One can also ask what Sharpe measure is empirically reasonable . To
do this, we present historical Sharpe measures for a number of broad-based
indices. These measures, some of which represent portfolios actually held,
are reported in Table 7 .1 . For each index, the ex post measure (based on
maximum likelihood estimates) and an unbiased squared Sharpe measure
estimate are presented. For the July 1963 through December 1991 period
the squared Sharpe measures are presented for the CRSP value-weighted
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Table 7.1 . Historical Sharρe measures for selected stock indices, where the Sharρe measure is
defined as the ratio of the mean excess return to the standard deviation of the excess return . "sp
is the monthly ex~ost squared Share measure and "sp(ann) is the~ositive square root of this
measure annualized. sp is an unbiased estimate of the monthly squared Share measure and
sp(ann) is theρositive square root of this measure annualized. The CRSP value-weighted index
is a value-weighted ~ortfoli~ of all 1V1'SE and Amex stocks . The CRSP small-stock portfolio is
the value-weighted ~~rtfolio of stocks in the lowest joint 1V1'SEAmex market value decile. The
portfolio offour indices is the portfolio with the maximum ex host squared Share measure .
The four indices are the CRSP value-weighted index, the CRSP small-stock decile, the CRSP
long-term government bond index, and the CRSP cororate bond index . The bond indices are
from the CRSP SBBI file. The SEEP 500 index is a value-weighted index of 500 stocks . The

SEEP-Barra value index is an index of stocks within the SEEP 500 universe with low ratios of
pace per share to book value per share. Every six months a breakpoint price-to-book-value ratio
is determined so that a~~roximately half the market capitalization of the SEEP 500 is below the

breakpoint and the other half is above. The value index is a value-weighted index of those stocks
in the group of low price-to-book-value ratios. The Sf~P 500-Βαrrα growth index is an index of
stocks within the SEEP 500 universe with high price-to-book-value ratios . The growth index is
a value-weighted index of those Sf~P 500 stocks in the group of high prise-to-book-value ratios .

Time Period

	

Index

	

"sp

	

sp(ann)

	

sp

	

sp(ann)

6307-9112 CRSP value-weighted index 0 .0091 0.33 0.0061 0.27
6307-9112 CRSP small-stock portfolio 0.0142 0.40 0.0100 0.35
6307-9112 Portfolio of four indices 0.0145 0.41 0.0021 0.16
8101-9206 S&P 500 index 0.0161 0.44 0.0085 0.32
8101-9206 S&P-Barra value index 0.0208 0.50 0.0130 0.40
8101-9206

	

S&P-Barra growth index

	

0.0108

	

0.36

	

0.0033

	

0.20

index, the CRSP small-stock (10th decile) portfolio, and the exρost optimal
portfolio of these two indices plus the long-term government index and
the corporate bond index distributed by CRSP in the stock, bonds, bills,
and inflation file . The small-stock portfolio has a monthly squared Sharpe
measure of 0.014 (or 0.010 using the unbiased estimate) , substantially below
the value we use for the tangency portfolio. The ex post optimal four-index
portfolio's measure is only slightly higher at 0 .015 .

Table 7.1 also contains results for the period from January 1981 through
June 1992 for the S&P 500 Index, a value index, and a growth index . The
value index contains the S&P 500 stocks with low price-to-book-value ratios
and the growth index is constructed from stocks with high price-to-book-
value ratios . The source of the index return statistics used to calculate
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the measures is Capaul, Rowley, and Sharpe (1993) . These results provide a
useful perspective on the maximum magnitudes of Sharpe measures since it
is generally acknowledged that the 1980s was a period of strong stock market
performance, especially for value-based investment strategies . Given this
characterization, one would expect these results to provide a high estimate
of possible Sharpe measures. The Sharpe measures from this period are
in line with (and lower than) the value used in the analysis of the risk-
based alternative . The highest ex post estimate is 0.021 for the value index .
Generally, we interpret the evidence in this table as supporting the measure
selected to calibrate the analysis for the risk-based alternative .

Proceeding using a squared Sharpe measure of 0.021 for the optimal
orthogonal portfolio to calculate ~, the distribution of ~i is

~~ ^' F32,3os(7 •1 ) •

	

(7.4 .9)

This distribution will be used to characterize the risk-based alternative .
We specify the distribution for two nonrisk-based alternatives by spec-

ifying values of ~, ~, and ~~~p i ~p, and then calculating ~ from (7.4 .5) .
To specify the intercepts we assume that the elements of ~ are normally
distributed with a mean of zero. We consider two values for the standard
deviation, 0 .0007 and 0 .001 . When the standard deviation of the elements
of ~ is 0 .001 about 95% of the alphas will lie between -0.002 and ~--0 .002, an
annualized spread of about 4.8% . A standard deviation of 0 .0007 for the al-
phas would correspond to an annual spread of about 3.4% . These spreads
are consistent with spreads that could arise from data-snooping ó and are
also plausible and even somewhat conservative given the contrarian strat-
egy returns presented in Lakonishok, Shleifer, and Vishny . For ~ we use a
sample estimate based on portfolios sorted by market capitalization for the

period 1963 to 1991 (inclusive) . The effect of ~~~p ~~p on ~ will typically be

small, so we set it to zero . To get an idea of a reasonable value for the non-
centrality parameter given this alternative, we calculate the expected value
of ~ given the distributional assumption for the elements of ~ conditional

upon ~ _ ~ . The expected value of the noncentrality parameter is 39 .4 for

a standard deviation of 0 .0007 and 80.3 for a standard deviation of 0 .001 .
Using these values for the noncentrality parameter, the distribution of ~i is

~~ ^' F32,3o9(39 .4) when ~~ = 0.0007,

	

(7.4.10)

~~ ^' F32,3os(80 .3) when ~~ = 0 .001 .

	

(7.4.11)

A plot of the four distributions from (7.4.8), (7 .4.9), (7.4.10), and
(7.4.11) is in Figure 7 .1 . The vertical bar on the plot represents the value

6 With data-snooping the distribution of ~t is not exactly a noncentral F (see Lo and MacKin-
lay, 1990), but for the purposes of this chapter, the noncentral Fwill be a good approximation .
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Figure 7.1 . Distributions for the CAPM zero-intercept test statistic for four alternatives . Alter-
native 1 is the CAPM (null hypothesis); alternative 2 is the risk-based alternative (deviations
from the CAPM are from missing risk factors) ; alternatives 3 and 4 are the nonrisk-based
alternative (deviations from the ~,APM are unrelated to risk) . The distributions are F32,3os ~~),
F~2,sos(7 .1), Fs2,3os~39 .4), andF32,3os~80 .3) for alternatives I, 2, 3, and 4, respectively . The
degrees offreedom are set to correspond to monthly observations from July 1963 to December
1992 (342 observations) . Using 25 stock portfolios and 7 bond portfolios, and the CRSP
value-weighted index as proxy for the market portfolio, the test statistic is 1 .91, represented by
the vertical line. The probability is calculated using an interval width of 0 .02 .

1 .91 which Fama and French calculate for the test statistic . From this figure
notice that the null hypothesis distribution and the risk-based alternative
distribution are quite close together, reflecting the impact of the upper
bound on the noncentrality parameter (see MacKinlay, 1987, for detailed
analysis of this alternative) . In contrast, the nonrisk-based alternatives' dis-
tributions are far to the right of the other two distributions, consistent with
the noncentrality parameter being unbounded for these alternatives .

What do we learn from this plot? First, if the objective is to distinguish
among risk-based linear asset pricing models, the zero-intercept test is not
particularly useful because the null distribution and the alternative distribu-
tion have substantial overlap. Second, if the goal is to compare a risk-based
pricing model with a nonrisk-based alternative, the zero-intercept test can
be very useful since the distributions of the test statistic for these alternatives
have little overlap . Likelihood analysis provides another interpretation of
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the plot. Specifically, one can compare the values óf the densities for the
four alternatives at ~t = 1 .91. Such a comparison leads to the conclusion
that the first nonrisk-based alternative is much more likely than the other
three .

This analysis can be related to the Fama and French (1993) finding that
a model with three factors does a good job in explaining the cross-section
of expected returns . For a given finite cross-section under any alternative,
the inclusion of the optimal orthogonal portfolio will lead to their result .
As a consequence, their result on its own does not support the risk-based
category. Indeed, the Fama and French approach to building the extra
factors will tend to create a portfolio like the optimal orthogonal portfolio
independent of the explanation for the CAPΜ deviations . Their extra fac-
tors essentially assign positive weights to the high positive alpha stocks and
negative weights to the large negative alpha stocks . This procedure is likely
to lead to a portfolio similar to the optimal orthogonal portfolio because the
extreme alpha assets are likely to have the largest (in magnitude) weights
in the optimal orthogonal portfolio (since its weights are proportional to
~ta ; see (7.2 .9) ) . Further, the fact thatwhen Fama and French increase the
number of factors to three the significance of the test statistic only decreases
marginally is also consistent with the argument that missing risk factors are
not the whole story.

More evidence of the potential importance of nonrisk explanations can
be constructed using weekly data . To see why the analysis of weekly data can
be informative, consider the biases introduced with market frictions such
as the bid-ask spread . Blume and Stambaugh (1983) show that in the pres-
ence of the bid-ask bounce, there is an upward bias in observed returns . For
asset i and time period t, Blume and Stambaugh show the following approx-
imation for the relation between expected observed returns and expected
true returns :

E(R°) = E(~~) + ~%~,

	

(7.4.12)

where the superscript "o" distinguishes the returns observed with bid-ask
bounce contamination from the true returns ; >~ t is the bias which is equal
to one-fourth of the proportional bid-ask spread squared . The bias will
carry over into the intercept of any factor model . Consider a one-factor
model in which the factor is ex ante the tangency portfolio. In this model
the intercept for all true asset returns will be zero . However, the intercepts
for the observed returns and the squared Sharpe measure of the optimal
orthogonal portfolio will be nonzero . If the bias of the observed factor
return is zero and if the factor return is uncorrelated with the bid-ask bounce
process, then the intercept of the observed returns is

~° _ ~%~,

	

(7.4.13)

since ~i of the true return will be zero . Then, the squared Sharpe measure
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of the optimal orthogonal portfolio is

sh - a~'~°l-I~~~,

	

(7.4.14)

where ~° is the residual covariance matrix for the weekly observed returns
and tg is the vector of biases for the included portfolios . When the null
hypothesis that the intercepts are zero is examined using observed returns,
violations exist solely due to the presence of the bid-ask spread .

Bias of the type induced by the bid-ask spread is interesting because its
magnitude does not depend on the length of the observation interval . As
a consequence its effect will statistically be more pronounced with shorter
observation intervals when the variance of the true returns is smaller . To
examine the potential relevance of the above example, the F-test statistic
is calculated using a sample of weekly returns for 32 portfolios. The data
extends from July 1962 through December 1992 (1,591 weeks) . NYSE and
Amex stocks are allocated to the portfolios based on beginning-of-year mar-
ket capitalization . Each portfolio is allocated an equal number of stocks
and the portfolios are equal-weighted with rebalancing each week . For
these portfolios, using the CRSP value-weighted index as the one factor,
the F-test statistic is 2.82 . Under the null hypothesis, this statistic has a
central F distribution with 32 degrees of freedom in the numerator and
1,558 degrees of freedom in the denominator . (Diagnostics reveal some
serial correlation in the residuals of the weekly one-factor model, in which
case the null distribution will not be exactly central F .) This statistic can
be cast in terms of the alternatives presented in Figure 7.1 since the non-
centrality parameter of the F distribution will be approximately invariant to
the observation interval and hence only the degrees of freedom need to be
adjusted. Figure 7.2 presents the results that correspond to the weekly ob-
servation interval . Basically, these results reinforce the monthly observation
results in that the observed statistic is most consistent with the nonrisk-based
category.

In summary, the results suggest that the risk-based missing risk factors
argument is not the whole story. Figures 7.1 and 7.2 show that the test
statistic is still in the upper tail when the distribution of ~l in the presence
of missing risk factors is tabulated . The p-value using this distribution is
0.03 for the monthly data and less than 0 .001 for weekly data. Hence there
is a lack of support for the view that missing factors completely explain the
deviations .

On the other hand, given the parametrizations considered, there is
some support for the nonrisk-based alternative views . The test statistic falls

The bias of a portfolio will be a weighted average of the bias of the member assets if the
weights are independent of the returns process, as when the portfolio is rebalanced period
by period versus when the portfolio is weighted to represent a buy and hold strategy (as in a
value-weighted portfolio) . In the latter case the bias at the portfolio level will be minimal .
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Figure 7.2. Distributions for the CAPM zero-intercept test statistic for four alternatives. Alter-
native I is the CAPM (null hypothesis); alternative 2 is the risk-based alternative (deviations
from the CAPM are from missing risk factors); alternatives 3 and 4 are the nonrisk-based al-
ternative (deviations from the CAPM are unrelated to risk) . The distributions areFs2,~s5s(0)~
Fsrz .~ssa(7 •1 ), Fs2,~zsa~39.4), and Fß2,ιsss(80 .3) for alternatives 1, 2, 3, and 4, respectively .
The degrees offreedom are set to correspond to weekly observations from July 1962 to December
1992 (1,591 observations) . Using 32 stock portfolios and the CRSP value-weighted index as
a proxy for the market p~rtfoliq the test statistic is 2 .82, represented by the vertical line . The
probability is calculated using an interval width of 0.02.

almost in the middle of the nonrisk-based alternative with the lower standard
deviation of the elements of alpha . Several of the nonrisk-based alternatives
could equally well explain the results . Different nonrisk-based views can
give the same noncentrality parameter and test statistic distribution . The
results are consistentwith the data-snooping alternative of Lo and MacKinlay
(1990), the related sample selection biases discussed by Kothari, Shanken,
and Sloan (1995) and Breen and Korajczyk (1993), and the presence of
market inefficiencies . The analysis suggests that missing risk factors alone
cannot explain the empirical results .

0.01

	

'

	

~

	

~

7.4.3 Estimation Approach

In this section we present an estimation approach to make inferences about
possible values for Sharpe measures . An estimator for the squared Sharpe
measure of the optimal orthogonal portfolio for a given subset of assets is
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employed . Using this estimator and its variance, confidence intervals for
the squared Sharpe measure can be constructed, facilitating judgments on
the question of the value implied by the data and reasonable alternatives

given this value. An unbiased estimator of the squared Sharpe measure

is presented. This estimator corrects for the bias that is introduced by
searching over N assets to find the maximum and is derived using the fact

that ~~ from (7.4 .4) is distributed as a noncentral F variate . Its moments
follow from the moments of the noncentral F distribution . The estimator is

"sh
-

Θ~
- (Τ-Ν-Κ)

	

Ν(Τ-Ν-Κ-2)
ί1+μρΩρ1 l-tρL

[

	

(Τ-Ν-Κ-2)] [ Τ(Τ-Ν-Κ)
(7.4.15)

(Ν+Τ[1+μρΩρ~μρ] -tsh ) 2 +(Ν+2 Τ[1 +μρΩρ i μρ] -'shs)(Τ-Ν- Κ-2)

Χ

	

(Τ-Ν-Κ-4)

(7 .4.16)

Conditional on the factor portfolio returns, the estimator of sh in (7.4.15)

is unbiased, that is
E~sh, I ~ρΏρ l μρ] = sh, •

	

(7.4.17)

Recall that when K = 0 the optimal orthogonal portfolio is the tangency

portfolio and hence shs = s4 . The estimator can be applied when K = 0

by setting ~~~p 1~.~ = 0. Jobson and Korkie (1980) contains results for the
K = 0 case .

The estimation approach is illustrated using the above estimator for
the Fama and French (1993) portfolios . We consider the case of K = 0
and therefore the maximum squared Sharpe measure from 33 assets : the
value-weighted CRSP index, 25 stock portfolios, and 7 bond portfolios are

being estimated . (Recall that, with K = 0, sh = s9 .) The estimator of shs

can be readily calculated, but the variance of shs cannot since it depends on

sh . To calculate the variance we use a consistent estimator, 'sh , and then

asymptotically (as T increases) :

'sh ^~ N(sh , Var(sh )) . (7.4.18)

Using monthly data from July 1963 through December 1991, the estimate of
sh is 0 .092 and the asymptotic standard error is 0 .044. Using this data set, a
two-sided centered 90% confidence interval is thus (0 .020, 0.163) and a one-
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sided 90% confidence interval is (0.036, oo) . It is worth noting the upward
bias of the ex post maximum squared Sharpe measure as an estimator. For
the above case the ex post maximum is 0.209, substantially higher than the
unbiased estimate of 0 .092. The bias is particularly severe when N is large
(relative to T) .

In terms of an annualized Sharpe measure, the two-sided interval corre-
sponds to a lower value of 0 .49 and an upper value of 1 .40, and the one-sided
interval corresponds to a lower value of 0.65. Given that the tangency port-
folio and the optimal orthogonal portfolio are the same, this interval can
be used to provide an indication of the magnitude of the maximum Sharpe
measure needed for a set of factor portfolios to explain the cross-section of
excess returns of portfolios based on market-to-book-value ratios . Consis-
tent with the CRSP value-weighted index being unable to explain the cross-
section of returns, its ex post Sharpe measure lies well outside the intervals,
with an annualized value of 0 .33. In general, one can use the confidence
intervals to decide on promising alternatives . For example, if one believes
that ex ante Sharpe measures in the 90% confidence interval are unlikely in
a risk-based world, then the nonrisk-based alternatives provide an attractive
area for future study.

7.5 Asymptotic Arbitrage in Finite Economies

In the absence of the link between the model deviation and the residual
variance expressed in (7.2.17), asymptotic arbitrage opportunities can exist.
However, the analysis of this chapter is based on the importance of the
link in a finite economy. To illustrate this importance we use a simple
comparison of two economies, economy A in which the link is present and
economy B in which the link is absent . The absence of the link is the only
distinguishing feature of economy B . For each economy, the behavior of the
maximum squared Sharpe measure as a function of the number of securities
is examined .

Specification of the mean excess return vector and the covariance ma-
trix is necessary. We draw on the previously introduced notation . In addition
to the risk-free asset, assume there exist N risky assets with mean excess re-
turn ~ and nonsingular covariance matrix V, and a risky factor portfolio
with mean excess return ~~ and variance ~p . The factor portfolio is not a
linear combination of the N assets . If necessary this criterion can be met
by eliminating one of the assets included in the factor portfolio . For both
economies A and B,

1-~ = α + βρ/-~ρ, (7.5 .1)

V = βρβρσρ + δδ'σh + Ισύ.

	

(7.5.2)
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Given the above mean and covariance matrix and the assumption that the
factor portfolio p is a holdable asset, the maximum squared Sharpe measure
for economy I is

sÍ = sp + ~'(~~'~h + I~u)-l am .

	

(7.5 .3)

Analytically inverting (~~'~h +I~É) and simplifying, (7.5 .3) can be expressed
as

1

	

~2 ~'~ 2
sÍ = sp + ~ú ~'~ +

(emu
+	

~h ~'~) ~
.

	

(7.5 .4)

To complete the specification, the cross-sectional properties of the elements
of ~ and ~ are required . We assume that the elements of a are cross-
sectionally independent and identically distributed,

~~ ^~ ~D(0, ~~),

	

a = 1, . . . , N .

	

(7.5.5)

The specification of the distribution of the elements of ~ conditional on a
differentiates economies A and B. For economy A,

~~ ~ ~ ^~ ~D(~~, 0),

	

i = 1, . . . , N,

	

(7.5.6)

and for economy B,

~~ ~ a ^~ ~D(0, tea),

	

i = 1, . . . , N .

	

(7 .5 .7)

Unconditionally, the cross-sectional distribution of ~ will be the same for
both economies, but for economy A conditional on ~, ~ is fixed. This incor-
porates the link between the deviation and the residual variance . Because
~ is independent of ~ in economy B, the link is absent .

Using (7.5 .4) and the cross-sectional distributional properties of the
elements of ~ and ~, an approximation for the maximum squared Sharpe
measure for each economy can be derived . For both economies, (1/N)~'~
converges to~~,and(1/N)~'~convergesto~~ . For economy A, (1/N2)(~'~)2
converges to ~~ and, for economy B, (1/N) (~'~) 2 converges to ~á . Substitut-
ing these limits into (7 .5 .4) gives approximations of the maximum squared
Sharpe measures squared for each economy. Substitution into (7.5 .4) gives

2
sA

-
sp
+ ~ú + N~h~á

'

	

( 7 .5 .8)

~2

	

~2~2
sB
-

sp
+ Nßú Cl ~ú -}- N~h~á ] '

	

(7 .5 .9)

for economies A and B, respectively. The accuracy of these approximations
for values ofN equal to 100 and higher is examined. Simulations show that
these approximations are very precise .
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The importance of the link asymptotically can be confirmed by consid-
ering the values of s9 in (7 .5 .8) and (7.5 .9) for large N. For economy A and
large N,

and for economy B,
2

s 2 - s2 + N ~~

	

(7.5.11)
9

	

p

	

~u

The maximum squared Sharpe measure is bounded as N increases for econ-
omy A and unbounded for economy B. Using the correspondence between
boundedness of the maximum squared Sharpe measure and the absence
of asymptotic opportunities (see Ingersoll, 1984, Theorem I) there will be
asymptotic arbitrage opportunities only in economy B .

However, our interest here is to examine the importance of the link
between the deviation and the residual variance given a finite number of
assets. We do this by considering the value of the maximum Sharpe mea-
sures for various values of N . The values of N considered are 100, 500,
1,000, and 5,000 . For completeness, we also report the maximum squared
Sharpe measure for N = oo. Shanken (1992) presents related results for
an economy similar to B with ~ restricted to be zero for N = 3000 and
N = 3,000,000. He notes (p. 1574) that for N = 3,000,000 "something
close to a `pure' arbitrage is possible ." Given (7.5 .8) and (7.5.9), to com-

plete the calculations, sp, ~h, ~ú, and ~~ must be specified. The parameters
are selected so that ~ and V are realistic for stock returns measured at a
monthly observation interval . The selected parameter values are sp = 0 .01,

~h = 2.66, and ~u = 0.05 . Two values are considered for tea , 0.001 and
0.002. The results are reported in Table 7 .2. The difference in the behavior
of the maximum squared Sharpe measures between economies A and B is
dramatic. For economy A, the boundedness is apparent as the maximum
squared Sharpe measure ranges from 0 .023 to 0.030 as N increases from 100
to infinity. For economy A the impact of increasing the cross-sectional vari-
ation in the mean return ~s minimal . Comparing ~a = 0.001 to ~~ = 0 .002
reveals few differences, with the exception of differences for the N = 100
case. For economy B it is a different story. The maximum squared Sharpe
measure is very sensitive to both increases in the number of securities and
increases in the cross-sectional variation in the mean return . For ~~ = 0.002,
the maximum squared Sharpe measure increases from 0 .169 to 1.608 as N

increases from 100 to 1,000 . When ~~ increases from 0.001 to 0 .002 the
maximum squared Sharpe measure increases from 0 .21 to 0 .80 for N equal

to 500 .
In addition to the maximum squared Sharpe measures, Table 7 .2 reports

the approximate probability that the annual excess return of the portfolio

s4 = sp +
12

,

	

(7.5 .10)
σh
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Table 7.2. A comparison of the maximum squared Sharpe measure for two economies denoted
A and B, where the Sharpe measure is the ratio of the mean excess return to the standard
deviation of the excess return . The excess return covariance matrix for the two economies is
identical and the cross-sectional dispersion in mean excess returns is identical . The economies
differ in that economy A displays stronger dependence between the mean excess returns and
the covariance matrix of excess returns. The mean and covariance matrix parameters for the
economies are calibrated to correspond roughly to monthly returns (see the text for details) .
N is the number of securities, s ; is the maximum squared Sharpe measure for economy I,
I = A, B, and p(zI < 0) is the approximate 1~~ -obability for economy I that the annual return
of the portfolio with the maximum Sharpe measure squared will be less than the risk free return
assuming that monthly returns are jointly normally distributed and that the mean excess return
is positive . ~~ is the cross-sectional standard deviation of the component of the mean return
that is explained by a second factor in economy A and that is not explained by a common factor
in economy B .

** Less than 0.001 .

with the maximum squared Sharpe measure is negative . For this probability
calculation, it is assumed that returns are jointly normally distributed and
that the mean excess return of the portfolio with the maximum squared
Sharpe measure is nonnegative . The mean and variance are annualized
by multiplying the monthly values by 12. This probability allows for an
economic interpretation of the size of the Sharpe measure . Since the excess
return represents a payoff on a zero investment position, if the probability
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of a negative outcome is zero then there is an arbitrage opportunity. For
economy A this probability is about 28% and stable as N increases . However,
for economy B the probability of a negative annual excess return quickly
approaches zero. For example, for the case of ~~ equal to 0.002 and N
equal to 500 the probability of a negative outcome is less than 0 .001. (For
the 67 years from 1926 through 1992 the excess return of the S&P index
has been negative 37.3% of the years and the excess return of the CRSP
small-stock index has been negative 34 .3% of the years ; over the 30-year
period from 1963 through 1992 the S&P Index has been negative 36 .7% of
the time and the small-stock index has been negative 30 .0% of the time .)
Since negative outcomes can occur, the excess return distributions cannot
be completely ruled out on economic grounds . However, in aggregate it
appears that, given the above model for economy B, unrealistic investment
opportunites can be constructed with a relatively small number of stocks .

This is not the case for economy A. The bottom line is that in a perfect
capital markets environment, the link between the model deviations and
the residual variance is important even with a limited number of securities .
Analysis which does not recognize this link is unlikely to shed light on the
potential for omitted risk factors to explain the deviations .

7.6 Conclusion

Empirical work in economics in general and in finance in particular is ex post
in nature, making it sometimes difficult to discriminate among various ex-
planations for observed phenomena . A partial solution to this difficulty is
to examine the alternatives and make judgments from an ex ante point of
view. The current explanations of the empirical results on asset pricing are
particularly well-suited to ex ante analysis. This chapter presents a framework
based on the economics of mean-variance analysis to address and reinterpret
prior empirical results.

Multifactor asset pricing models have been proposed as an alternative
to the Sharpe-Lintner CAPM. However, the results in this chapter suggest
that looking at other alternatives will be fruitful . The evidence against the
CAPM can also be interpreted as evidence that multifactor models on their
own cannot explain the deviations from the CAPΜ . Generally, the results
suggest that more can be learned by considering the likelihood of various
existing empirical results under differing specific economic models.



8
Data -Snooping Biases in Tests

of Financial Asset Pricing Models

Introduction

THE RELIANCE OF ECONOM[C SCIENCE upon nonexperimental inference is, at
once, one of the most challenging and most nettlesome aspects of the disci-
pline. Because of the virtual impossibility ~f controlled experimentation in
economics, the importance of statistical data analysis is now well-established .
However, there is a growing concern that the procedures under which for-
mal statistical inference have been developed may not correspond to those
followed in practice . For example, the classical statistical approach to se-
lecting a method of estimation generally involves minimizing an expected
hss function, irrespective of the actual data . Yet in practice the properties

of the realized data almost always influence the choice of estimator .

Of course, ignoring obvious features of the data can lead to nonsensical
~n~erences even when the estimation procedures are optimal in some metric .
But the way we incorporate those features into our estimation and testing
procedures can affect subsequent inferences considerably . Indeed, by the

very nature of ~mpińcal innovation in economics , the axioms of classical
statistical analysis are violated routinely: future research is often motivated
b~ the successes and failures of past investigations . Consequenfl~, few em-
pirical studies are free of the kind of data-instigated pretest biases discussed
in Learner (1978) . Moreover, we can expect the degree of such biases to
increase with the number ~f published studies performed oar any single data

~ Perhaps the ~~~st ~~mplete analysis of such issues in economic applications is by Learner

(1978 ) . Recent ~a~e~s by Lakonishok and Smid~ (1988), Merton (1987), aηd Ross (1987)
address data sn~~ping in financial economics. Of co~~rse , data snooping has been a concern
an~o~g probabilists and staüs~icians for quite some time, and is at least as old as the controversy
between Bayesia~~ and classical statisticians . Interested readers should consult Berger and
Wolper~ (1984, Chapter 4 .2) and Leaner (1978, Chapter 9) for further discussion .
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8. Data-Snooping Biases in Tests of Financial Asset Pricing Models

set-the more scrutiny a collection of data is subjected to, the more likely
will interesting (spurious) patterns emerge . Since stock market prices are
perhaps the most studied economic quantities to date, tests of financial asset
pricing models seem especially susceptible .

In this paper, we attempt to quantify the inferential biases associated with
one particular method of testing financial asset pricing models such as the
capital asset pricing model (CAPM) and the arbitrage pricing theory (APT) .
Because there are often many more securities than there are time series
observations of stock returns, asset pricing tests are generally performed on
the returns of portfolios of securities . Besides reducing the cross-sectional
dimension of the joint distribution of returns, grouping into portfolios has
also been advanced as a method of reducing the impact of measurement
error. However, the selection of securities to be included in a given portfolio
is almost never at random, but is often based on some of the stocks' empirical
characteristics . The formation of size-sorted portfolios, portfolios based on
the market value of the companies' equity, is but one example . Conducting
classical statistical tests on portfolios formed this way creates potentially
significant biases in the test statistics . These are examples of "data-snooping
statistics," a term used by Aldous (1989, p . 252) to describe the situation
"where you have a family of test statistics T(a) whose null distribution is
known for fixed a, but where you use the test statistic T = T(a) for some a
chosen using the data ." In our application the quantity a mad be viewed as
a vector of zeros and ones that indicates which securities are to be included
in or omitted from a given portfolio . If the choice of a is based on the data,
then the sampling distribution of the resulting test statistic is generally not
the same as the null distribution with a fixed a ; hence, the actual size of the
test may differ substantially from its nominal value under the null . Under
plausible assumptions our calculations show that this kind of data snooping
can lead to rejections of the null hypothesis with probability 1 even when
the null hypothesis is true!

Although the term "data snooping" may have an unsavory connotation,
our usage neither implies nor infers any sort of intentional misrepresenta-
tion or dishonesty. That prior empirical research may influence the way
current investigations are conducted is often unavoidable, and this very fact
results in what we have called data snooping. Moreover, it is not at all ap-
parent that this phenomenon necessarily imparts a "bias" in the sense that
it affects inferences in an undesirable way. After all, the primary reason for
publishing scientific discoveries is to add to a store of common knowledge
on which future research may build .

But when scientific discovery is statistical in nature, we must weigh the
significance of newly discovered relations in view of past inferences . This
is recognized implicitly in many formal statistical circumstances, as in the
theory of sequential hypothesis testing . But ~t is considerably more difficult
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to correct for the effects of specification searches in practice since such
searches often consist of sequences of empirical studies undertaken by many
individuals over many years . For example, as a consequence of the many
investigations relating the behavior of stock returns to size, Chen, Roll, and
Ross (1986, p. 394) write : "It has been facetiously noted that size may be the
best theory we now have of expected returns. Unfortunately, this is less of a
theory than an empirical observation ." Then, as Merton (1987, p . 107) asks
in a related context : "Is it reasonable to use the standard t-statistic as a valid
measure of significance when the test is conducted on the same data used
by many earlier studies whose results influenced the choice of theory to be
tested?" We rephrase this question in the following way : Are standard tests of
significance valid when the construction of the test statistics is influenced by
empirical relations derived from the very same data to be used in the test?
Our results show that using prior information only marginally correlated
with statistics of interest can distort inferences dramatically .

In Section 8 .1 we quantify the data-snooping biases associated with test-
ingfinancial asset pricing models with portfolios formed by sorting on some
empirically motivated characteristic . Using the theory of induced order
statistics, we derive in closed form the asymptotic distribution of a com-
monly used test statistic before and after sorting . Thίs not only yields a
measure of the effect of data snooping, but also provides the appropriate
sampling theory when snooping is unavoidable . In Section 8.2 we report
the results of Monte Carlo experiments designed to gauge the accuracy of
the asymptotic approximations used in Section 8 .1 . In Section 8 .3 two em-
pirical examples are prodded that illustrate the potential importance of
data-snooping biases in existing tests of asset pricing models, and in Section
8.4, we show how these biases can arise naturally from our tendency to focus
on the unusual . We conclude ~n Section 8 .5 .

8.1 Quantifying Data-Snooping Biases With Induced Order Statistics

Many tests of the CAPM and APΤ have been conducted on returns of groups
of securities rather than on individual security returns, where the grouping
is often according to some empirical characteristic of the securities . Per-
haps the most common attribute by which securities are grouped is market
value of equity or "size." The prevalence of size-sorted portfolios in recent
tests of asset pricing models has not been precipitated by any economic

ZStatisticians have considered a closely related problem, known as the "file drawer prob-
lem," in which the overall significance of several published studies must be assessed while
accounting for the possibility of unreported insignificant studies languishing in various inves-
tigators' file drawers . An excellent review of the file drawer problem and its remedies, which
has come to be known as "meta-analysis," is provided by Iyengar and Greenhouse (1988) .
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theory linking size to asset prices. It is a consequence of a series of em-
pirical studies demonstrating the statistical relation between size and the
stochastic behavior of stock returns . 3 Therefore, we must allow for our fore-
knowledge of size-related phenomena in evaluating the actual significance
of tests performed on size-sorted portfolios . More generally, grouping secu-
rities by some characteristic that is empirically motivated may affect the size
of the usual significance tests, 4 particularly when the empirical motivation
is derived from the very data set on which the test is based . We quantify
these effects in the following sections by appealing to asymptotic results for
induced order statistics, and show that even mild forms of data snooping
can change inferences substantially . In Section 8 .1 .1, a brief summary of
the asymptotic properties of induced order statistics, is provided . In Section
8.1 .2, results for tests based on individual securities are presented, and in
Section 8 .1 .3, corresponding results for portfolios are reported . We pro-
vide a more positive interpretation of data-snooping biases as power against
deviations from the null hypothesis in Section 8 .1 .4 .

8. l . l Asymptotic Properties of Induced Order Statistics

Since the particular form of data snooping we are investigating is most com-
mon in empirical tests of financial asset pricing models, our exposition will
lie in that context. Suppose for each of N securities we have some consistent
estimator ~ i of a parameter ~i which is to be used in the construction of an
aggregate test statistic. For example, in the Sharpe-Lintner CAPM, ~ 1 would
be the estimated intercept from the following regression :

~ι - RJt = άτ -~ (Rmιι - Rjτ)ιβί ~- εtι (8 .1 .1)

where RZ~, Rm ~, and Rf~ are the period-t returns on security i, the market
portfolio, and a risk-free asset, respectively. A test of the null hypothesis
that ~i = 0 would then be a proper test of the Sharpe-Lintner version of the
CAPM; thus, ~i may serve as a test statistic itself. However, more powerful
tests may be obtained by combining the ái's for many securities . But how
should we combine them?

Suppose for each security i we observe some characteristic XZ , such as
its out-of-sample market value of equity or average annual earnings, and
we learn that XZ is correlated empirically with ~i . By this we mean that the
relation between Xi and ~i is an empirical fact uncovered by "searching"

3See Banz (1978, 1981), Brown, Kleidon, and Marsh (1983), and Chan, Chen, and Hsieh
(1985), for example . Although Banz's (1978) original investigation may have been motivated
by theoretical considerations, virtually all subsequent empirical studies exploiting the size effect
do so because of Banz's empirical findings, and not his theory .

4 Unfortunately the use of "size" to mean both market value of equity and type I error ~s
unavoidable . Readers beware .
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through the data, and not motivated by any a priori theoretical considera-
tions. This search need not be a systematic sifting of the data, but may be
interpreted as any one of Learner's (1978) six specification searches, which
even the most meticulous of classical statisticians has conducted at some
point. The key feature is that our interest in characteristic XZ is derwed
from a look at the data, the same data to be used in performing our test .
Common intuition suggests that using information contained in the Xi's can
yield a more powerful test of economic restrictions on the ~;'s . But if this
characteristic is not a part of the original null hypothesis, and only catches
our attention after a look at the data (or after a look at another's look at the
data), using it to form our test statistics may lead us to reject those economic
restrictions even when they obtain . More formally, if we write ~xi as

ái = αι + ζ1, (8 .1 .2)

then it is evident that under the null hypothesis where a ; = 0, any correlation
between Xi and ái must be due to correlation between the characteristic
and estimation or measurement error fit . Although measurement error is
usually assumed to be independent of all other relevant economic variables,
the very process by which the characteristic comes to our attention may
induce spurious correlation between X2 and ~i . We formalize this intuition
in Section 8.4 and proceed now to show that such spurious correlation has
important implications for testing the null hypothesis .

This is most evident in the extreme case where the null hypothesis ~xi = 0
is tested by performing a standard t-test on the largest of the ~ i 's. Clearly
such a test is biased toward rejection unless we account for the fact that the
largest ~; has been drawn from the set {~x~ } . Otherwise, extreme realizations
of estimation error will be confused with a violation of the null hypothesis .
I~ instead of choosing ~i by its value relative to other ~~'s, our choice is
based on some characteristic XZ correlated with the estimation errors of áÍ,
a similar bias might arise, albeit to a lesser degree .

To formalize the preceding intuition, suppose that only a subset of n
securities is used to form the test statistic and these n are. chosen by sorting
the XZ 's. That is, let us reorder the bivariate vectors [X Z ~ Z ]' according to
their first components, yielding the sequence

\α 1
:Ν] ) ~ (~ 2ιΝ] ) ' . . . ,

~~ Ν

:Ν])

(8 .1.3)

where X~;N < X2;N < • • • < XN;N and the notation X,;N follows that of the
statistics literature in denoting the ith order statistic from the sample of N
observations {Xi } . 5 The notation ~~i;,~ denotes the ith induced order statistic

5 It is implicitly assumed throughout that both á ; and X; have continuous joint and marginal
cumulative distribution functions ; hence, strict inequalities suffice .
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corresponding to Xi;N, or the ith concomitant of the order statistic X2;,v . 6 That
is, if the bivariate vectors [Xi ~ i ]' are ordered according to the Xi entries,

ált;,~l is defined to be the second component of the ith ordered vector. The

~lz;N1's are not themselves ordered but correspond to the ordering of the
Xi;N 's .~ For example, if Xi is firm size and ~~ is the intercept from a market-
model regression of firm is excess return on the excess market return, then
~l~;Nl is the ~ of the jth smallest of the N firms. We call this procedure

induced ordering of the ~ i 's .
It is apparent that if we construct a test statistic by choosing n securities

according to the ordering (8.1 .3), the sampling theory cannot be the same
as that of n securities selected independently of the data . From the following

remarkably simple result byYang (1977) , an asymptotic sampling theory for
test statistics based on induced order statistics may be derived analytically : $

Theorem 8.1 .1 . Let the vectors [X i á~]', i = 1, . . . , N, be independently and iden-
tically distributed and let 1 < iI < i2 < • • • < in < N be sequences of integers such
that, as N -i oo, ik/N ~ ~k E (0, 1) (k = 1, 2, . . . , n) . Then

η

lim Pr(ά1~ι ;Ν1 < αυ . . . , ά1~,, ;Ν1 < αη) = Π Pr(άk < αα Ι Fx(Χα) - ~κ),
Ν~ οο

	

k-Ι
(8.1.4)

where Fx ( •) is the marginal cumulative distribution function of XL .

Proof. See Yang (1977) . Q.E.D .

This result gives the large-sample joint distribution of a finite subset of in-
duced order statistics whose identities are determined solely by their relative

rankings ~~ (as ranked according to the order statistics Xi ;,v ) . From (8.1 .4)

it is evident that the ~l i;N1's are mutually independent in large samples . If
X~ were the market value of equity of the ith company, Theorem 8 .1 .1 shows

that the ái of the security with size at, for example, the 27th percentile is
asymptotically independent of the ~~ of the security with size at the 45th

percentile . 9 If the characteristics {X Z } and {á 2 } are statistically independent,

6The term concomitant of an order statistic was introduced by David (1973) , who was perhaps
the first to systematically investigate its properáes and applications . The term induced order
statisúc was coined by Bhattacharγa (1974) at about the same time. Although the former term
seems to be more common usage, we use the latter in the interest of brevity. See Bhattacharya
(1984) for an excellent review .

~If the vectors are independently and identically distributed and X, is perfecily correlated
with ~~, then á~z;,~l are also order statistics . But as long as the correlalion coefficient p is strictly
between -1 and 1, then, for example, ~1,~ ;,~1 will generally not be the largest ~~ .

$ See also David and Galambos (1974) and Watterson (1959) . In fact, Yang (1977) provides
the exact finite-sample distribution of any finite collection of induced order statistics, but even
assuming bivariate normality does not yield a tractable form for this distribution .

T This is a limiting result and implies that the identities of the stocks with 27th and 45th
percentile sizes will generally change as N increases .
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the joint distribution of the latter clearly cannot be influenced by order-
ing according to the former . It is tempting to conclude that as long as the
correlation between Xi and ~i is economically small, induced ordering can-
not greatly affect inferences . Using Yang's result we show the fallacy of this
argument in Sections 8 .1 .2 and 8 .1 .3.

8.1.2 Biases of Tests Based on Individual Securities

We evaluate the bias of induced ordering under the following assumption :

(Ai ) The vectors [Xi ~i ]' ( i = l, 2, . . . , N) are independently and identi-
cally distributed bivariate normal random vectors with mean
[fi x ~]', variance [~~ ~~]', and correlation ~ E (-1, 1) .

The null hypothesis H is then

Η:α=Ο.

Examples of asset pacing models that yield restrictions of this form are
the Sharpe-Lintner CAPΜ and the exact factor pricing version of Ross's
APΤ.10 Under this null hypothesis, the ~i 's deviate from zero solely through
estimation error.

Since the sampling theory provided by Theorem 8 .1 .1 is asymptotic, we
construct our test statistics_ using a finite subset of n securities where it is
assumed that n « N . If these securities are selected without the prior use
of data, then we have the following well-known result :

θ-

_ 1
η

2Σ ά2σα ί=ι
α, 2

Χη ~ (8 .1 .5)

3 where ~~ ~s any consistent estimator of ~~,~~ Therefore, a 5 percent test
of H may be performed by checking whether ~ is greater or less than C05 ,

~ o See Chamberlain (1983), Huberman and Kandel (1987), Lehmann and Modest (1988),
and Wang (1988) for further discussion of exact factor pricing models . Examples of tests
that fit into the framework of H are those in Campbell (1987), Connor and Korajcryk (1988),
Gibbons, Ross, and Shanken (1989), Huberman and Kandel (1987), Lehmann and Modest
(1988), and MacKinlay (1987) .

~~ln most contexts the consistency of ~~ is with respect to the number of time series ob-
servations T . In that case something must be said of the relative rates at which T and N
increase without bound so as to guarantee convergence of ~. However, under H the parameter
~~ may be estimated cross-sectionall~ ; hence, the relation ^~ in (8 .1 .5) need only represent
N-asymptotics .
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where C05 is defined by
FX~(C0 5) _ .95

	

(8.1 .6)

and Fx ń ( •) is the cumulative distribution function of a ~ń variate .
Now suppose we construct ~ from the induced order statistics ~~Z~ :wl ,

k = l, . . . n, instead of the ~i's . Specifically, define the following test statistic :

1

	

n

~ _ ~2 ~ ~~1~ ;~,~ .

	

(8.1 .7)
« k=1

Using Theorem 8 .1 .1, the following proposition is easily established :

Proßosit~on 8.1.1. Under the null hypothesis H and assumption (AI), as N in-
creases without bound the induced order statistics á~tk :,~ (k = 1, . . . n) converge in
distribution to independent Gaussian random variables with mean 1-ßk and variance.
~k , where

~~ _- p (~«l mix) [Fx 1 (~α) - fix] = lo~α~-ι (~α) >

	

(8.1 .8)

which implies

σk =- σά (1 - ιο2 ),

	

(8.L9)

~ `γ (1 - ρ2) • Χή(λ),

	

(8 .1.10)

with noncentrality parameter

~ - ~ ~k 2	p2
2 ~ [~ 1 (Sk)~ ,

	

(8.1.11)
k-1 ~ ~k ~

	

1 - p k=1

where ~(•) is the standard normal cumulative distribution function .

Proof. This follows directly from the definition of a noncentral chi-squared
variate. The second equality in (8 .1.8) follows from the fact that ~(~ k) _
Fx(Sk~x + 1-~~) • ∎

Proposition 8 .1.1 shows that the null hypothesis H is violated by induced
ordering since the means of the ordered ~ i's are no longer zero . Indeed,
the mean of ~~tk .,~~ may be positive or negative depending on p and the
(limiting) relative rank ~k . For example, if p = 0 .10 and ~~ = 1, the mean
of the induced order statistic in the 95th percentile is 0 .164 .

The simplicity of ~'s asymptotic distribution follows from the fact that the
~~ Zk:N~'s become independent as N increases without bound . It follows from
the fact that induced order statistics are conditionally independent when
conditioned on the order statistics that determine the . induced ordering .
This seemingly counterintuitive result is easy to see when [X 2 ~i] is bivariate
normal, since, in this case

«ί= α+ρ(σ« /~~)[Χτ-Ι-~κ]+Zt>

Ζί IID 1V(0, σά (1 - ρ2)),

	

(8 .1 .12)
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where X; and 7,~ are independent. Therefore, the induced order statistics
may be represented as

α[ik :N] = α + /~ (σα/σχ) {Χik:N - /-~χ} + Ζ[ik],

Ζς~α 1

	

IID .ΛΓ(0, σά (1 - ρ2)),

	

(8.1 .13)

where the Z~tkl are independent of the (order) statistics XIk;N . But since
Xtk ; N is an order statistic, and since the sequence i~/N converges to ~~, XZk:N
converges to the ~ kth quantile, F-i (~k) . Using (8 .1 .13) then shows that
á~tk ; i~l is Gaussian, with mean and variance given by (8.1 .8) and (81.9), and
independent of the other induced order statistics .~ 2

To evaluate the size of a 5 percent test based on the statistic ~, we
need only evaluate the cumulative distribution function of the noncentral
~n(~) at the point C05/(1 - ~2 ), where Coy is given in (8.1 .6) . Observe that
the noncentrality parameter ~ is an increasing function of p 2 . If p 2 = 0
then the distribution of ~ reduces to a central ~ń which is identical to the
distribution of ~ in (8 .1 .5)-sorting on a characteristic that is statistically
independent of the ~i's cannot affect the null distribution of ~ . As ái and
Xi become more highly correlated, the noncentral ~ 2 distribution shifts to
the right . However, this does not imply that the actual size of a 5 percent
test necessarily increases since the relevant critical value for ~, C0 5/(1 - p`~),
also grows with p2 ~3

Numerical values for the size of a 5 percent test based on ~ may be
obtained by first specifying choices for the relative ranks {~k } of the n secu-

~2In fact, this shows how our parametric specification may be relaxed . If we replace nor-
mality by the assumption that ~ ; and X~ satisfy the linear regression equation

«i = /Αα + ~¢~Χί - /-kχ) + Zi,

where Z; is independent of X~, then our results remain unchanged . Moreover, this specifica-
tion may allow us to relax the gather strong IID assumption since David (1981, Chapters 2 .8
and 5.6) does present some results for order statistics in the nonidentically distributed and
the dependent cases separately. However, combining and applying them to the above linear
regression relation is a formidable task which we leave to the more industrious .

is In fact, if ~l = 1, the limiting distribution of ~ is degenerate since the test statistic
converges in probability to the following limit :

Σ ~Φ 1«k)~ 2 .
k=1

This limit may be greater or less than C0 5 depending on the values of ~k ; hence, the size of the
test in this case may be either zero or unity .
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rities. We choose three sets of {~k ~, yielding three distinct test statistics ~~,

~2, and ~3 :

k
Θι ρ ξα =

		

k = 1, 2, . . . , η ;

	

(8 .L14)
η+1'

k
for k = 1, 2, . . . , n o ,

~2q~k _
(m+l)(no+l)'

k-{-m(no+1)-no
fork= ~0-}-1, . . .,2no ;

(m -~ 1)(no + 1)

Θ3 αξk =
(m+1)(ηο+1)'
k+(m-1)(ηο+1)-η~

(m + 1)(η~ + 1)

	

'

for k = 1, 2, . . . , no ,

fork= no+1, . . .,2no ;

(8.1 .15)

(8.1 .16)

where n - 2no and no is an arbitrary positive integer. The first method

(8 .1 .14) simply sets the Gk's so that they divide the unit interval into n equally
spaced increments. The second procedure (8 .1 .15) first divides the unit

interval into m+ 1 equally spaced increments, sets the first half of the Gk's to
divide the first such increment into equally spaced intervals each of width
1/(m + 1)(no + 1), and then sets the remaining half so as to divide the last
increment into equally spaced intervals also of width 1 /(m-}-1)(no + 1) each .
The third procedure is similar to the second, except that the Gk's are chosen
to divide the second smallest and second largest m -i- 1 increments into
equally spaced intervals of width 1/(m ~- 1)(n o -}- 1) .

These three ways of choosing n securities allow us to see how an attempt
to create (or remove) dispersion-as measured by the characteristic X i-
affects the null distribution of the statistics . The first choice for the relative
ranks is the most dispersed, being evenly distributed on (0, 1) . The second

yields the opposite extreme : the á~Zk ;N~'s selected are those with character-
istics in the lowest and highest 100/(m + 1)-percentiles . As the parameter
m is increased, more extreme outliers are used to compute ~2 . This is also
true for ~3, but to a lesser extent since the statistic is based on ~~t~ ;N~'s in the
second lowest and second highest 100/(m + 1)-percentiles .

Table 8.1 shows the size of the 5 percent test using ~~, ~2, and ~3 for
various values of n, ~2 , and m. For concreteness, observe that p2 is simply
the R2 of the cross-sectional regression of ái on Xi , so that p = f.10 implies
that only 1 percent of the variation in ~ i is explained by Xz . For this value
of R~, the entries in the second panel of Table 8 .1 show that the size of a
5 percent test using ~~ is 4.9 percent for samples of 10 to 100 securities .
However, using securities with extreme characteristics does affect the size,
as the entries in the "~2-test" and "~3-test" columns indicate . Nevertheless
the largest deviation is only 8 .1 percent. As expected, the size is larger for
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Table 8.1. Theoretical sizes of nominal 5 percent ~n-tests ~f H : ~~ = 0 (i = 1, . . . , n)

using the test statistics ~~, where ~~ _- ~~n~ ~~~~(~1 :N7 /~~, j = 1, 2, 3, for various sample

sizes n . The statistic ~l is based on induced order statistics with relative ranks evenly spaced
in (0, 1) ; ~2 is constructed from induced order statistics ranked in the lowest and highest
100/ ( m+ 1) j~ercent fracliles; and ~3 is constructed from those ranked in the second lowest and
second highest 100/(m -} 1)~~ercent fra~tiles . The R2 is the square of the correlation between
~~ and the sorting characteristic .

θ2-Test

	

θβ-Test

	

θρ-Test

	

Θ~-Test

	

θ2-Test

	

Θβ-Test

η

	

B~-Test (m = 4) (m = 4) (m = 9) (m = 9) (m = 19) (m = 19)

R2 = 0.005
10

	

0.049

	

0.051

	

0.049

	

0.053

	

0.050

	

0.054

	

Π.052
20

	

0.050

	

0.052

	

0.049

	

0.054

	

0.050

	

0.056

	

0.052
50

	

0.050

	

0.053

	

0.048

	

0.056

	

0.050

	

0.060

	

0.053
100

	

0.050

	

0.054

	

0.047

	

0.059

	

0.050

	

0.064

	

0.054
R~ = 0.01

10

	

0.049

	

0.053

	

0.048

	

0.056

	

0.050

	

0.059

	

0.053
20

	

0.049

	

0.054

	

0.047

	

0.058

	

0.050

	

0.063

	

π.Π54
50

	

0.049

	

Π.056

	

Π.046

	

0.063

	

0.051

	

0.071

	

0.057
100

	

0.049

	

0.059

	

0.045

	

0.069

	

0.051

	

0.081

	

0.059
R2 = 0.05

10

	

0.045

	

0.063

	

Π.041

	

0.080

	

Π.051

	

0.101

	

0.066
20

	

0.045

	

0.070

	

Π.038

	

0.096

	

0.052

	

0.130

	

0.073
50

	

0.046

	

0.086

	

0.033

	

0.135

	

0.053

	

0.201

	

0.087
100

	

Π.047

	

0.107

	

0.028

	

Π.190

	

0.054

	

0.304

	

0.106
R2 = 0.10

10

	

0.040

	

0.076

	

0.032

	

0.116

	

0.052

	

0.166

	

0.083
20

	

0.041

	

0.093

	

0.028

	

0.158

	

0.053

	

0.244

	

Ο.Π99
5π

	

0.042

	

0.133

	

0.020

	

0.267

	

0.055

	

0.442

	

0.137
100

	

0.043

	

0.192

	

0.014

	

0.423

	

0.058

	

0.680

	

0.191
Κ2 = Π.2Π

1 Π

	

0.030

	

0.104

	

0.019

	

0.202

	

0.052

	

0.330

	

0.121
20

	

0.032

	

0.146

	

0.013

	

0.318

	

0.054

	

0.528

	

0.163
50

	

Π.034

	

0.262

	

0.006

	

0.599

	

0.059

	

0.862

	

0.272
100

	

0.036

	

0.432

	

0.002

	

0.857

	

0.064

	

0.987

	

0.429

the test based on ~2 than for that of ~3 since the former statistic is based on
more extreme induced order statistics than the latter .

When the R 2 increases to 10 percent the bias becomes more important .
Although tests based on a set of securities with evenly spaced characteristics
still have sizes approximately equal to their nominal 5 percent value, the
size deviates more substantially when securities with extreme characteristics
are used. For example, the size of the 82 test that uses the 100 securities in
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the lowest and highest characteristic decile is 42 .3 percent! In comparison,
the 5 percent test based on the second lowest and second highest deciles
exhibits only a 5 .8 percent rejection rate . These patterns become even more
pronounced for R 2's higher than 10 percent .

The intuition for these results may be found in (8 .1 .8)-the more ex-
tremeinduced order statistics have means farther away from zero ; hence, a
statistic based on evenly distributed ~~Z k;N~'s will not provide evidence against
the null hypothesis ~ = 0 . If the relative ranks are extreme, as is the case for
~2 and ~3, the resulting ~~t k :,~'s may appear to be statistically incompatible
with the null .

8.1 .3 Biases of Tests Based on Portfolios of Securίties

The entries in Table 8 .1 show that as long as the n securities chosen have
characteristics evenly distributed in relative rankings, test statistics based
on individual securities yield little inferential bias . However, in practice
the ordering by charácteristics such as market value of equity is used to
group securities into portfolios, and the portfolio returns are used to construct
test statistics . For example, let n - noq, where no and q are arbitrary
positive integers, and consider forming q portfolios with n~ securities in
each portfolio, where the portfolios are formed randomly . Under the null
hypothesis H we have the following :

1

	

kn~

	

2
φk = -

	

Σ α~ ^~

	

C~>
σα ~ ,

	

k = 1, 2, . . . , q,

	

(8.L17)
η° i=(k-i)ηο+ι

ηο

9
θρ -

η2 Σ φk ^' χ4 ,
Πα k=1

(8 .1.18)

where ~k is the estimated alpha of portfolio k and ~p is the aggregate test
statistic for the q portfolios. To perform a 5 percent test of H using ~~, we
simply compare it with the critical value C0 5 defined by

FX 9 (C0 5 ) = 0.95 .

	

(8.1.19)

Suppose, however, we compute this test statistic using the induced order
statistics {~~tk ;,~~ } instead of randomly chosen {ái} . From Theorem 8.1 .1 we
hare :

Pro~~osüion 8.1 .2. Under the null hypothesis H and assum-ption (AI ), as N increases
without bound, the statistics ~k (k = 1, 2, . . . , q) and ~~ converge in distribution
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to the following:

1

	

kn o

	

kno 2

	

2

Φk =- - Σ
α[y. ;,γ) ti Ν

	

Σ
μ1 , σα (1- Ρ)

	

(8.1.20)

η0 J=ίk-1)ηο +1

	

1=(k-1)ηο+1 ηο

	

ηο

4

θρ =
η2
Σ Φk ^' (1 - Α2 ) ~ Χ4(λ),

	

(8.1 .21)
Πα

k=1

with noncentrality parameter

2

	

4

	

kno

	

2

' (~ )

	

(8.1 .22)~ = n°p2~ 1 ~ [~- > >
1 -

	

k= 1 nO J= ~k-
1)no+ 1

Proof. Again, this follows directly from the definition of a noncentral
chi-squared variate and the asymptotic independence of the induced order
statistics . ∎

The noncentrality parameter (8 .1 .22) is similar to that of the statistic based
on individual securities-it is increasing in p2 and equals zero when p = 0 .
However, it differs in one respect : because of portfolio aggregation, each
term of the outer sum (the sum with respect to k) is the average of ~-' (~~)
over all securities in the kth portfolio . To see the importance of this, consider
the case where the relative ranks ~~ are chosen to be evenly spaced in (0, 1),
that is,

~~ = 1/(no4 + 1) .

	

(8.1 .23)

Recall from Table 8 .1 that for individual securities the size of 5 percent tests
based on evenly spaced ~;'s was not significantly biased . Table 8 .2 reports the
size of 5 percent tests based on the portfolio statistic gyp, also using evenly
spaced relative rankings . The contrast is striking-even for as low an R 2 as
1 percent, which implies a correlation of only f10 percent between ~i and
XZ, a 5 percent test based on 50 portfolios with 50 securities in each rejects
67 percent of the time! We can also see how portfolio grouping affects the
size of the test for a fixed number of securities by comparing the (q = i,
no = j) entry with the (q = j, no = i) entry. For example, in a sample
of 250 securities a test based on 5 portfolios of 50 securities has size 16 .5
percent, whereas a test based on 50 portfolios of 5 securities has only a 7 .5
percent rejection rate . Grouping securities into portfolios increases the size
considerably. The entries in Table 8.2 are also monotonically increasing
across rows and across columns, implying that the test size increases with
the number of securities, regardless of whether the number of portfolios or
the number of securities per portfolio is held fixed .

To understand why forming portfolios yields much higher rejection
rates than using individual securities, recall from (8.1 .8) and (8.1.9) that the
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Table 8.2 . Theoretical sizes of nominal 5 percent ~9-tests of H : ~~ = 0 (i = 1, . . . , n)

usin iheteststatistic~ where - n ~ 9 ~2 ~z and~ k =- (1/n ) ~kq

	

~ Ná'

	

p'

	

p

	

°

	

k=1 k/ ~~

	

~

	

j=(k-1)g+l ~y'~ ~
is constructedfrom portfolio k, with portfolios formed by sorting on some characteristic correlated

with estimates áe . This induced ordering alters the null distribution of ~~ from ~g to (1 -

R2)/~q (~) where the noncentrality parameters is a function of the number q of portfolios, the

number no of securities in each portfolio, and the squared correlation coefficient R2 between á ;

and the sorting characteristic.

q

	

ηο =5

	

ηο = 10

	

ηο =20

	

η ο =25

	

η„=50

= 0.005

5

	

0.053

	

0.058

	

0.068

	

0.073

	

0.102

10

	

0.055

	

0.062

	

0.077

	

0.086

	

0.134

20

	

0.057

	

0.067

	

0.091

	

0.105

	

0.185

25

	

0.058

	

0.070

	

0.097

	

0.113

	

0.208

50

	

0.062

	

0.079

	

0.123

	

0.148

	

0.311

R2 = 0.01
5

	

0.056

	

0.066

	

0.087

	

0.099

	

0.165

10

	

0.060

	

0.075

	

0.110

	

0.130

	

0.247

20

	

0.065

	

0.088

	

0.146

	

0.179

	

0.382

25

	

0.067

	

0.093

	

0.161

	

0.202

	

0.440

50

	

0.075

	

Π.117

	

0.232

	

0.302

	

0.669

R2 = 0.05
5

	

0.080

	

0.140

	

0.288

	

0.368

	

0.716

10

	

0.104

	

0.212

	

0.477

	

0.602

	

0.941

20

	

0.142

	

0.333

	

0.728

	

0.854

	

0.998
25

	

0.159

	

0.387

	

0.808

	

0.914

	

1.000

50

	

0.235

	

0.607

	

0.971

	

0.995

	

1.000

= 0.10

5

	

0.114

	

0.255

	

0.568

	

0.697

	

0.971

10

	

0.174

	

0.434

	

0.847

	

0.935

	

1 .000

20

	

0.276

	

0.688

	

0.985

	

0.998

	

1 .000

25

	

0.323

	

0.773

	

0.996

	

1 .000

	

1 .000

50

	

0.523

	

0.960

	

1 .000

	

1.000

	

1 .000

R2 = 0.20
5

	

0.193

	

0.514

	

0.913

	

0.971

	

1 .ΟΠG

10

	

0.348

	

0.816

	

0.997

	

1.000

	

1 .000

20

	

0.596

	

0.980

	

1 .000

	

1 .000

	

1 .000

25

	

0.688

	

0.994

	

1 .000

	

1 .000

	

1 .000

50

	

0.926

	

1 .000

	

1 .000

	

1 .000

	

1 .000

mean of ~~tk :,~~ is a function of its relative rank ik/N (in the limit), whereas
its variance ~~ (1 - p2) is fixed. Forming a portfolio of the induced order
statistics within a characteristic-fractile amounts to averaging a collection
of no approximately independent random variables with similar means and
identical variances. The result is a statistic ~k with a comparable mean but
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Table 8.3. Critical values C.oS for 5 percent ~ z -tests of H: a, = 0 (i = 1, . . . , n) using

the test statistic gyp , where ~~ _- no ~~_~ ~~/~~~ and ~~ _ (1/no) ~>9~α-~~y+~ ~~~. ;N ~ is
constructed from portfolio k, with portfolios formed by sorting on some characteristic correlated

with estimates á ; . This induced ordering alters the null distribution of ~~ from ~9 to (1 -

R 2̀)l~9 (~), where the noncentrality parameter ~ is a function of the number q of portfolios,

the number n~ of securities in each portfolio, and the squared correlation coefficient R2 between

~, and the sorting characteristic . C.oS is defined implicitly by the relation Pr(~~ > C.os) _

1 - FX Q~~~ ~C.os /(1 - R~)) = 0.05 . For comparison, we also report the 5 percent critical

value of the central ~~ distribution in the second column .

q

	

C.οs -Χ9
C.οs-χ4 (λ)

	

C.οs-χ4 (λ)

	

C.ο5-Χ4 (~)

	

C.οs-χ4 (λ)

	

Cοs-χ4 (λ)
(no = 5)

	

ίη~ = 10)

	

(no = 20)

	

(no = 25)

	

ίηο = 50)

R2 = 0.005
5

	

11.07

	

11 .22

	

11.45

	

11.93

	

12.16

	

13.29
10

	

18.31

	

18.6Π

	

19.03

	

19.87

	

20.28

	

22.31
20

	

31.41

	

31 .97

	

32.72

	

34.22

	

34.96

	

38.58
25

	

37.65

	

38.33

	

39.24

	

41.05

	

41.94

	

46.33
50

	

67.50

	

68.78

	

70.44

	

73.72

	

75.35

	

83.39
R2 = 0 .01

5

	

11.07

	

11 .36

	

11 .83

	

12.74

	

13.19

	

15.31
ΙΟ

	

18.31

	

18.89

	

19.73

	

21 .36

	

22.1fi

	

26.00
20

	

31 .41

	

32.52

	

34.01

	

36.93

	

38.36

	

45.31
25

	

37.65

	

39.01

	

40.81

	

44.34

	

46.08

	

54.52
50

	

67.50

	

70.05

	

73.33

	

79.79

	

82.98

	

98.60
R2 = 0 .05

5

	

11 .07

	

12.45

	

14.53

	

18.39

	

20.21

	

28.68
10

	

18.31

	

21.09

	

24.88

	

32.00

	

35.41

	

51 .54
20

	

31 .41

	

36.72

	

43.62

	

56.75

	

63.09

	

93.59
25

	

37.65

	

44.18

	

52.56

	

68.59

	

76.35

	

113.82
50

	

67.50

	

79.85

	

95.41

	

125.47

	

140.16

	

211.67
R2 = 0.10

5

	

11 .07

	

13.65

	

17.45

	

24.37

	

27.63

	

42.96
10

	

18.31

	

23.58

	

30.62

	

43.74

	

50.02

	

79.98
20

	

31 .41

	

41.60

	

54.63

	

79.32

	

91.27

	

148.98
25

	

37.65

	

50.21

	

66.13

	

96.44

	

111.15

	

182.43
50

	

67.50

	

91.49

	

121.42

	

179.11

	

207.33

	

345.24
R2 = 0.20

5

	

11 .07

	

15.70

	

22.44

	

34.82

	

40.71

	

68.73
10

	

18.31

	

27.98

	

40.86

	

65.01

	

76.65

	

132.76
20

	

31 .41

	

50.51

	

74.89

	

121.32

	

143.91

	

253.93
25

	

37.65

	

61.32

	

91.29

	

148.61

	

176.58

	

313.10
50

	

67.50

	

113.43

	

170.67

	

281.43

	

335.83

	

603.10

with a variance no times smaller than each of the ~~Z k ;N~'s. This variance
reduction amplifies the importance of the deviation of the ~k mean from
zero, and is ultimately reflected in the entries of Table 8 .2. A more dramatic
illustration is provided in Table 8 .3, which reports the appropriate 5 percent
critical values for the tests in Table 8 .2-when R2 = 0.05, the 5 percent
critical value for the ~ 2 test with 50 securities in each of 50 portfolios is
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211.67. If induced ordering is unavoidable, these critical values may serve
as a method for bounding the effects of data snooping on inferences .

When the R2 increases to 10 percent, implying a cross-sectional corre-
lation of about f32 percent between ~Í and Xi , the size approaches unity
for tests based on 20 or more portfolios with 20 or more securities in each
portfolio . These results are especially surprising in view of the sizes reported
in Table 8.1, since the portfolio test statistic is based on evenly spaced in-
duced order statistics ~12k :~~ . Using 100 securities, Table 8.1 shows a size of
4.3 percent with evenly spaced ~xl~k ;~~l's ; Table 8.2 shows that placing those
100 securities into 5 portfolios with 20 securities in each increases the size
to 56.8 percent. Computing ~~ with extreme ~ltk :,vl would presumably yield
even higher rejection rates . The biases reported in Tables 8 .2 and 8.3 are
even more surprising in view of the limited use we have made of the data .
The only data-related information impounded in the induced order statis-
tics is the rankings of the characteristics {X i} . Nowhere have we exploited
the values of the X;'s, which contain considerably more precise information
about the ~i's .

8.1.4lnterpretingData-Snooping Bias as Power

We have so far examined the effects of data snooping under the null hy-
pothesis that ~i = 0, for all i . Therefore, the degree to which induced
ordering increases the probability ofrejecting this null is implicitly assumed
to be a bias, an increase in type I error. However, the results of the previ-
ous sections may be reinterpreted as describing the power of tests based on
induced ordering against certain alternative hypotheses .

Recall from (8.1 .2) that ~ i is the sum of ~ i and estimation error ~i. Since
all pi's are zero under H, the induced ordering of the estimates ~ i creates
a spurious incompatibility with the null arising solely from the sorting of
the estimation errors ~ i . But if the pi's are nonzero and vary across i, then
sorting by some characteristic Xi related to ~ i and forming portfolios does
yield a more powerful test. Forming portfolios reduces the estimation error
through diversification (or the law of large numbers), and grouping by Xi
maintains the dispersion of the wt's across portfolios . Therefore what were
called biases in Sections 8.1 .1-8 .1 .3 may also be viewed as measures of the
power of induced ordering against alternatives in which the p i 's differ from
zero and vary cross-sectionally with Xi . The values in Table 8.2 show that
grouping on a marginally correlated characteristic can increase the power
substantially.~4

14However, implicit in Table 8 .2 is the assumption that the ~ ;'s are cross-sectionally inde-
pendent, which may be too restrictive a requirement for interesting alternative hypotheses .
For example, if the null hypothesis ~ ; = 0 corresponds to the Sharpe-Lintner CAPM, then
one natural alternative might be a two-factor APT In that case, the Á2's of assets with similar
factor loadings would tend to be positively cross-sectionally correlated as a result of the omitted
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To formalize the above intuition within our framework, suppose that the
p i 's were IID random variables independent of ~i and have mean ~~ and
variance ~á . Then the ái's are still independently and identically distributed,
but the null hypothesis that ~i = 0 is now violated. Suppose the estimation
error ~i were identically zero, so that all variation in ~ i was due to variations
in ~ i . Then the values in Table 8 .2 would represent the power of our test
against this alternative, where the squared correlation is now given by

2 _

	

Cove [Xi, ai]
pp

	

Var[Xi] • Var[~ i ] •

If, as under our null hypothesis, all pi's were identically zero, then the values
in Table 8 .2 must be interpreted as the size of our test, where the squared
correlation reduces to

2

	

C0V2 [Χί, ζί]
ρ5

	

Var[Χί ] • Var[ζί]

(8.1.24)

(8.1.25)

More generally, the squared correlation p2 is related to p2 and pp in the
following way :

ρ2
_

	

CoV2 [Χί, ai]

	

_ ~~-'OV[Χί, ai] + ~-'OV[~,ζί])2

	

~8.1 .26)
Var[Χί] • Var[ái]

	

Var[Χί] • (Var[αί] +Var[ζί])

2

	

_ Var[ζί ]
_ (ρ=~ + ρρ,/1 - π )

	

~ - Var[ái] ~

	

(8 .1 .27)

Holding the correlations ps and ~p fixed, the importance of the spurious
portion of ~ 2 , given by ~ s , increases with ~, the fraction of variability in ái
due to estimation error. Conversely, if the variability of ~i is largely due to
fluctuations in ~i, then p2 will reflect mostly gyp .

Of course, the essence of the problem lies in our inability to identify ~
except in very special cases . We observe an empirical relation between Xi
and ~i, but we do not know whether the characteristic varies with ~i or with
estimation error ~i . It is a type of identification problem that is unlikely to
be settled by data analysis alone, but must be resolved by providing theo-
retical motivation for a relation, or no relation, between Xi and ~i . That is,
economic considerations must play a dominant role in determining ~ . We
shall return to this issue in the empirical examples of Section 8 .3 .

factor. This positive correlation reduces the benefits of grouping . Grouping by induced or-
dering does tend to cluster ~i's with similar (nonzero) means together, but correlation works
against the vańance reduction that gives portfolio-based tests their power . The importance of
cross-sectional dependence is evident in MacKinlay's (1987) power calculations . We provide
further discussion in Section 8.2 .3 .
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8.2 Monte Carlo Results

Although the values in Tables 8.1-8.3 quantify the magnitude of the biases
associated with induced ordering, their practical relevance may be limited
in at least three respects . First, the test statistics we have considered are
similar in spirit to those used in empirical tests of asset pricing models,
but implicitly use the assumption of cross-sectional independence . The
more common practice is to estimate the covariance matrix of the N asset
returns using a finite number T of time series observations, from which
an F-distributed quadratic form may be constructed . Both sampling error
from the covariance matrix estimator and cross-sectional dependence will
affect the null distribution of ~ in finite samples .

Second, the sampling theory of Section 8.1 is based on asymptotic ap-
proximations, and few results on rates of convergence for Theorem 8.1 .1 are
available . 15 How accurate are such approximations for empirically realistic
sample sizes?

Finally, the form of the asymptotics does not correspond exactly to pro-
cedures followed in practice . Recall that the limiting result involves a finite
number n of securities with relative ranks that converge to fixed constants
~~ as the number of securities N increases without bound. This implies that
as N increases, the number of securities in between any two of our chosen
n must also grow without bound. However, in practice characteristic-sorted
portfolios are constructed from all securities within a fractile, not just from
those with particular relative ranks . Although intuition suggests that this
may be less problematic when n is large (so that within any given fractile
there will be many securities), it is surprisingly difficult to verify .~ s

In this section we report results from Monte Carlo experiments that
show the asymptotic approximations of Section 8.1 to be quite accurate in
practice despite these three reservations . In Section 8.2 .1, we evaluate the
quality of the asymptotic approximations for the ~p test used in calculating
Tables 8.2 and 8.3 . In Section 8.2 .2, we consider the effects of induced order-
ing on F-tests with fixed N and T when the covariance matrix is estimated
and the data-generating process is cross-sectionally independent . In Section
8.2 .3, we consider the effects of relaxing the independence assumption .

15 However, see Bhattacharya (1984) and Sen (1981) .
~ sWhen n is large relative to a finite N, the asymptotic approximation breaks down . In

particular, the dependence between adjacent induced order statistics becomes important for
nontrivial n/N. A few elegant asymptotic approximations for sums of induced order statistics
are available using functional central limit theory and mad allow us to generalize our results to
the more empirically relevant case . See, for example, Bhattacharya (1974), Nagaraja (1982a,
1982b, 1984), Sandström (1987), Sen (1976, 1981), and Yang (1981a, 1981b) . However, our
Monte Carlo results suggest that this generalization may be unnecessary .
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8.2.1 Simulation Results for ~~

The ~q (~) limiting distribution of ~~ obtains because any finite collection of
induced order statistics, each with a fixed distinct limiting relative rank ~i in
(0, 1), becomes mutually independent as the total number N of securities
increases without bound. This asymptotic approximation implies that be-
tween any two of the n chosen securities there will be an increasing number
of securities omitted from all portfolios as N increases. In practice, all se-
curities within a particular characteristic fractile are included in the sorted
portfolios; hence, the theoretical sizes of Table 8 .2 may not be an adequate
approximation to this more empirically relevant situation . To explore this
possibility we simulate bivariate normal vectors (~ i, Xi ) with squared corre-
lation R2 , form portfolios using the induced ordering by the Xi's, compute
~~ using all the ~~1;N~'s (in contrast to the asymptotic experiment where only
those induced order statistics of given relative ranks are used), and then
repeat this procedure 5,000 times to obtain the finite sample distribution .

Table 8.4 reports the results of these simulations for the same values
of R`~, no , and q as in Table 8 .2. Except when both n o and q are small, the
empirical sizes of Table 8 .4 match their asymptotic counterparts in Table 8 .2
closely. Consider, for example, the R 2 = 0.05 panel ; with 5 portfolios each
with 5 securities, the difference between the theoretical and empirical size is
1 .1 percentage points, whereas this difference is only 0 .2 percentage points
for 25 portfolios each with 25 securities . When no and q are both small, the
theoretical and empirical sizes differ more for larger R2 , by as much as 7 .4
percent when R2 = 0.20 . However, for the more relevant values of R2, the
empirical and theoretical sizes of the ~~ test are virtually identical .

8.2.2 Effects of Induced Ordering on F-Tests

Although the results of Section 8 .2 .1 support the accuracy of our asymp-
totic approximation to the sampling distribution of ~~, the closely related
F-statistic is used more frequently in practice . In this section we consider
the finite-sample distribution of the F-statistic after induced ordering. We
perform Monte Carlo experiments under the now standard multivariate
data-generating process common to virtually all static financial asset pricing
models. Let rz1 denote the return of asset i between dates t - 1 and t, where
i = 1, 2, . . . , N and t = 1, 2, . . . , T. We assume that for all assets i and
dates t the following obtains :

k

rt~ = ai + Σ β~jηί + ~is,
~-ι

(8.2.1)

where ~i and ßtß are fixed parameters, rr is the return on some portfolio j
(systematic risk), and ~i~ is mean-zero (idiosyncratic) noise . Depending on
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Table 8.4. Empirical sizes of nominal 5 percent ~g -tests of H : ~~ = 0 (i = 1, . . . , n)

using the test statistic~p, where ~p = na ~9 ~ 2 ~ 2 and ~k =- (1/na) ~k9

	

~ . .N
k=1 k/ a~ i=(k-1)q}1 ~y'~ l

is constructedfrom portfolio k, with portfolios formed by sorting on some characteristic correlated

with estimates ~~ . This induced ordering alters the null distribution of ~p from ~g to (1 -

R2 ) • ~q (~), where the noncentrality parameter ~ is a function of the number q of portfolios,

the number na of securities in each portfolio, and the squared correlation coefficient R 2 between
~~ and the sorting characteristic . Each simulation is based on 5000 replications ; asymptotic
standard errors for the size estimates may be obtained from the usual binomial approximation,

and is 3 .08 x 10
-3 for the 5 percent test.

q

	

ηα = 5

	

ηο = 10

	

ηο = 20

	

ηο = 25

	

η~ = 50

R2 = 0.005
5

	

0.055

	

0.057

	

0.067

	

0.075

	

0.108
10

	

0.054

	

0.063

	

0.080

	

0.084

	

0.139
20

	

0.056

	

0.068

	

0.086

	

0.106

	

0.182

25

	

0.062

	

0.070

	

0.104

	

0.112

	

0.209
50

	

0.059

	

0.077

	

0.119

	

0.146

	

0.314

R2 = 0.01
5

	

0.058

	

0.064

	

0.093

	

0.105

	

0.174
10

	

0.059

	

0.076

	

0.119

	

0.130

	

0.257
20

	

0.057

	

0.083

	

0.140

	

0.188

	

0.385
25

	

0.069

	

0.100

	

0.170

	

0.206

	

0.445

50

	

0.083

	

0.118

	

0.244

	

0.300

	

0.679

R2 = 0.05
5

	

0.091

	

0.149

	

0.310

	

0.392

	

0.723
10

	

0.117

	

0.227

	

0.493

	

0.611

	

0.943
20

	

0.156

	

0.351

	

0.744

	

0.854

	

0.999

25

	

0.163

	

0.401

	

0.818

	

0.916

	

1 .000

50

	

0.249

	

0.616

	

0.971

	

0.997

	

1 .000

R2 = 0.10
5

	

0.141

	

0.285

	

0.601

	

0.721

	

0.973
10

	

0.197

	

0.473

	

0.854

	

0.937

	

1 .000

20

	

0.308

	

0.709

	

0.985

	

0.998

	

1 .000

25

	

0.338

	

0.789

	

0.995

	

1 .000

	

1 .000

50

	

0.545

	

0.961

	

1 .000

	

1 .000

	

1 .000

RZ = 0.20
5

	

0.267

	

0.577

	

0.922

	

0.974

	

1 .000
10

	

0.405

	

0.833

	

0.997

	

1.000

	

1.000

20

	

0.635

	

0.982

	

1.000

	

1.000

	

1.000
25

	

0.728

	

0.996

	

1.000

	

1.000

	

1.000

50

	

0.933

	

1.000

	

1.000

	

1.000

	

1.000
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the particular application, r~ may be taken to be nominal, real, or excess
asset returns . The process (8.2 .1) may be viewed as a factor model where the
factors correspond to particular portfolios of traded assets, often called the
"mimicking portfolios" of an exact factor pricing model . In matrix notation,
we have

rι = α + Βrρ + ει,

	

Ε

	

~ Τρ~ = 0> Ε ί~ l = ~ρ;

	

(8.2.2)

E ~~ SEj,~ _ (~, for s = t,

	

(8.2.3)
10, otherwise ;

E ~ (r~ _ ~p)(~ _ ~~),~ _ ~, for s = t,

	

(8.2.4)
0,

	

otherwise .

Here, r~ is the N x 1 vector of asset returns at time t, B is the N x k matrix
of factor loadings, rp is the k x 1 vector of time-t spanning portfolio returns,
and ~ and ~ i are N x 1 vectors of asset return intercepts and disturbances,
respectively.

This data-generating process is the starting point of the two most pop-
ular static models of asset pricing, the CAPM and the APT . Further restric-
tions are usually imposed by the specific model under consideration, often
reducing to the following null hypothesis :

H : g(~, B) = 0,

where the function g is model dependent . l ~ Many tests simply set g(~, B) _
~ and define r~ as excess returns, such as those of the Sharpe-Lintner ~APM
and the exact factor-pricing APT . With the added assumption that n and rp
are jointly normally distributed, the finite-sample distribution of the follow-
ing test statistic is well known :

~'~-l am

	

T-k-N
~j = K '	

ti F`N,T-k-N,

	

K ~	,

	

(8 .2 .5)
1 + rp~-1 rp

	

N

where ~ and ~ are the maximum likelihood estimators of the covariance
matrices of the disturbances ~~ and the spanning portfolio returns ~, re-

spectively, and rp is the vector of sample means of rp . If the number of
available securities N is greater than the number of time series observations
T less k + 1, the estimator ~ is singular and the test statistic (8.2 .5) cannot

17 Examples of tests that fit into this framework are those in Campbell (1987), Connor and
Korajcryk (1988), Gibbons (1982), Gibbons and Ferson (1985), Gibbons, Ross, and Shanken
(1989), Huberman and Kandel (1987), Lehmann and Modest (1988), MacKinlay (1987), Stam-
baugh (1982), and Shanken (1985) .
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be computed without additional structure . This problem is most often cir-
cumvented in practice by forming portfolios . That is, let n be a q x 1 vector
of returns of q portfolios of securities where q « N. Since the return-
generating process is linear for each security i, a linear relation also obtains
for portfolio returns. However, as the analysis of Section 8 .1 foreshadows, if
the portfolios are constructed by sorting on some characteristic correlated
with ~ then the null distribution of ,/ι is altered .

To evaluate the null distribution of ~/~ under characteristic-sorting data
snooping, we design our simulation experiments in the following way . The
number of time series observations T is set to 60 for all simulations . With
little loss in generality, we set the number of spanning portfolios k to zero

so that ~i = ~~ ~ ri~l T . To separate the effects of estimating the covari-
ance matrix from the effects of cross-sectional dependence, we first assume
that the covariance matrix ~ of ~~ is equal to the identity matrix I-this
assumption is relaxed in Section 8.2 .3 . We simulate T observations of the
N x 1 Gaussian vector r~ (where N takes the values 200, 500, and 1000), and
compute ~ . We then form q portfolios (where q takes the values 10 and 20)
by constructing a characteristic Xi that has correlation p with ái (where p 2
takes the values 0 .005, 0 .01, 0 .05, 0.10, and 0.20), and then sorting the ái's
by this characteristic . To do this, we define

1 - X02
__ ~~ + ~z,

	

~~ ~D N(0, ~~),

	

~~ =
T~2

	

(8.2.6)

Having constructed the X i 's, we order {~xt} to obtain {ά~t :,η }, construct port-

folio intercept estimates that we call ~k, k = 1, . . . , n,

1

	

k,z a

φk = - Σ αίί:Ν],
ηΟ i= (k- 1)π~+1

Ν - no q,

	

(8.2.7)

from which we form the F-statistic,

i/ι = ~ • ~'~-i~ ^' Fq r-y'

	

~ _- (T - q)lq~

	

(8 .2.8)

where ~ denotes the q x 1 vector of Gk's, and ~ is the maximum likelihood
estimator of the q x q covariance matrix of the q portfolio returns. This
procedure is repeated 5000 times, and the mean and standard deviation of
the resulting distribution for the statistic ~/~ are reported in Table 8 .5, as well
as the size of 1, 5, and 10 percent F-tests .

Even for as small an R2 as 1 percent, the empirical size of the 5 percent
F-test differs significantly from its nominal value for all values of q and n o .
For the sample of 1000 securities grouped into ten portfolios, the empirical
rejection rate of 36 .7 percent deviates substantially from 5 percent . When
the 1000 securities are grouped into 20 portfolios, the size is somewhat
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Table 8.5. Empirical size ofF9 , T_ y tests based ~n q portfolios sorted by a random characteristic
whose squared correlation with ~ ; is R 2 . no is the number of securities in each portfolio and
n =- n o q is the total number of securities . The number of time series observations T is set to 60 .
The mean and standard deviation of the test statistic over the 5000 replications are reported.
The population mean and standard deviation ofF~o,so are 1 .042 and 0.523, respectively; those
of the FZO , 4o are 1 .053 and 0.423, respectively . Asymptotic standard errors for the size estimates
may be obtained from the usual binomial approximation ; they are 4 .24 x 10-~, 3 .08 x 10-3 ,
and 1.41 x 10 - ~ for the 10, 5, and 1 percent tests, respectively.

4 no

	

n

	

Mean Std. Dev. Size 10% Size 5% Size 1%

R2 = 0.005
10

	

20

	

200

	

1 .111

	

0.542

	

0.124

	

0.041

	

0.014
20

	

10

	

200

	

1.081

	

0.424

	

0.107

	

0.054

	

0.009
10

	

50

	

500

	

1.238

	

0.611

	

0.177

	

0.070

	

0.026
20

	

25

	

500

	

1.147

	

0.462

	

0.152

	

0.079

	

0.018
10

	

100 1000

	

1.406

	

0.679

	

0.270

	

0.118

	

0.046
20

	

50 1000

	

1.240

	

0.500

	

0 .194

	

0.114

	

0.033
Rz = 0.01

10

	

20

	

200

	

1 .225

	

0.619

	

0.181

	

0.071

	

0.026
20

	

10

	

200

	

1 .148

	

0.460

	

0.148

	

0.079

	

0.018
10

	

50

	

500

	

1 .512

	

0.728

	

0.318

	

0.152

	

0.070
20

	

25

	

500

	

1.301

	

0.514

	

0.240

	

0.143

	

0.036
10

	

100 1000

	

2 .030

	

0.908

	

0.576

	

0.367

	

0.203
20

	

50 1000

	

1.554

	

0.596

	

0.405

	

0.268

	

0.098
RL = 0.05

10

	

20

	

200

	

1.980

	

0.883

	

0.549

	

0.342

	

0.189
20

	

10

	

200

	

1.505

	

0.582

	

0.369

	

0.241

	

0.082
10

	

50

	

500

	

3.501

	

1.335

	

0.945

	

0.846

	

0.700
20

	

25

	

500

	

2 .264

	

0.801

	

0.798

	

0.670

	

0.382
10

	

100 1000

	

5 .991

	

1.976

	

0.999

	

0.997

	

0.986
20

	

50 1000

	

3.587

	

1 .169

	

0.992

	

0.972

	

0.879
Rz = 0.10

10

	

20

	

200

	

2.961

	

1 .196

	

0.868

	

0.713

	

0.538
20

	

10

	

200

	

1 .977

	

0.727

	

0.658

	

0.510

	

0.257
10

	

50

	

500

	

5.939

	

1 .931

	

0.999

	

0.997

	

0.987
20

	

25

	

500

	

3.526

	

1 .128

	

0.988

	

0.968

	

0.868
10

	

100 1000 10.888

	

3.050

	

1 .000

	

1.000

	

1.000
20

	

50 1000

	

6.123

	

1 .811

	

1 .000

	

1.000

	

0.999
R2 = 0.20

10

	

20

	

200

	

4.831

	

1 .657

	

0.997

	

0.982

	

0.937
20

	

10

	

200

	

2.895

	

0.992

	

0.948

	

0.882

	

0.667
10

	

50

	

500 10.796

	

3.022

	

1 .000

	

1.000

	

1.000
20

	

25

	

500

	

6.005

	

1 .758

	

1 .000

	

1.000

	

0.998
10

	

100 1000 20.695

	

5.112

	

1 .000

	

1.000

	

1.000
20

	

50 1000 11 .194

	

2.988

	

1 .000

	

1.000

	

1.000
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lower-26.8 percent-matching the pattern in Table 8 .2. Also similar is the
monotonicity of the size with respect to the number of securities . For 200
securities the empirical size is only 7 .1 percent with 10 portfolios, but it is
more than quintupled with 1000 securities . When the squared correlation
between ~i and Xi increases to 10 percent, the size of the F-test is essentially
unity for sample sizes of 500 or more . Thus even for finite sample sizes of
practical relevance, the importance of data snooping via induced ordering
cannot be overemphasized .

8.2.3 F-Tests With Cross-Sectional Dependence

The substantial bias that induced ordering imparts on the size of portfolio-
based F-tests comes from the fact that the induced order statistics {ά ςi;N ~ }
generally have nonzero means ; 18 hence, the averages of these statistics
within sorted portfolios also have nonzero means but reduced variances
about those means . Alternatively, the bias from portfolio formation is a
result of the fact that the ~i's of the extreme portfolios do not approach
zero as more securities are combined, whereas the residual variances of the
portfolios (and consequently the variances of the portfolio ~i's) do tend
to zero. Of course, our assumption that the disturbances ~~ of (8 .2.2) are
cross-sectionally independent implies that the portfolio residual variance ap-
proaches zero rather quickly (at rate 1/n o ) . But in many applications (such
as the CAPM) , cross-sectional independence is counterfactual . Firm size and
industry membership are but two factors that might induce cross-sectional
correlation in return residuals. In particular, when the residuals are posi-
tively cross-sectionally correlated, the bias is likely to be smaller since there
is less variance reduction in forming portfolios than in the cross-sectionally
independent case .

To see how restrictive the independence assumption is, we simulate
a data-generating process in which disturbances are cross-sectionally corre-
lated. The design is identical to that of Section 8 .2 .2 except that the residual
covariance matrix ~ is no longer diagonal . Instead, we set

~ _ ~~' + I,

	

(8.29)

where ~ is an N x 1 vector of parameters and I is the identity matrix. Such
a covariance matrix would arise, for example, from a single common factor
model for the N x 1 vector of disturbances ~ t :

ει = δΛt + νι> (8.2.10)

where ~ ~ is some IID zero-mean unit-variance common factor independent
of v t, and vt is N-dimensional vector white noise with covariance matrix I .

18 Οη1γ those ~~~;,~ for which i/N ~ 2 will have zero expectation under the null hypo-
thesis H .
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Table 8.6. Empirical size ofF9, T _ y tests based on q portfolios sorted by a random characteristic
whose squared correlation with ~~ is approximately 0.05. n o is the number of securities in each

portfolio and n noq is the total number of securities. The ~ ; 's of the portfolios are cross-
sectionally correlated, where the source of correlation is an IID zero-mean common factor in

the returns. The number of time series observations T is set to 60. The mean and standard

deviation of the test statistic over the 5000 replications are reported . The population mean and

standard deviation ofF~oso are 1 .042 and 0.523, respectively; those ~f the Frzo,4o are 1 .053

and 0.423, respectively. Asymptotic standard errors for the size estimates may be obtained from
the usual binomial approximation ; they are 4 .24 x 10-3 , 3.08 x 10 -s , and 1.41 x 10_ 3for
the 10, 5, and 1 percent tests, respectively .

4 n~

	

n

	

Mean Std. Dev. Size 10% Size 5% Size 1%

R~ ~ 0.05
10

	

20

	

200

	

1 .700

	

0.763

	

0.422

	

0.216

	

0.100
20

	

10

	

200

	

1.372

	

0.528

	

0.270

	

0.167

	

0.047
10

	

50

	

500

	

2.520

	

1.041

	

0.765

	

0.565

	

0.367
20

	

25

	

500

	

1.867

	

0.693

	

0.593

	

0.322

	

0.205
10

	

100

	

1000

	

3.624

	

1.605

	

0.925

	

0.820

	

0.682
20

	

50

	

1000

	

2.516

	

0.966

	

0.844

	

0.743

	

0.501

For our simulations, the parameters ~ are chosen to be eq~~ally spaced in the
interval [-1, 1] . With this design the cross-correlation of the disturbances
will range from -0 .5 to 0 .5. The Xi's are constructed as in (8 .2 .6) with

2

	

(1- ρ~)~2 («)ση =	
Ρ2

	

, ~2 (α) _- Ν7, Σ (δ2 + 1),

	

(8 .2.11)
-ι

where ~2 is fixed at 0.05 .
Under this design, the results of the simulation experiments may be

compared to the third panel of Table 8 .5, and are reported in Table 8.6 . 19
Despite the presence of cross-sectional dependence, the impact of induced
ordering on the size of the F-test is still significant . For example, with 20
portfolios each containing 25 securities the empirical size of the 5 percent
test is 32.3 percent; with 10 portfolios of 50 securities each the empirical
size increases to 82 .0 percent . As in the cross-sectionally independent case,
the bias increases with the number of securities given a fixed number of
portfolios, and the bias decreases as the number of portfolios is increased
given a fixed number of securities . Not surprisingly, for fixed no and q,

cross-sectional dependence of the ~i's lessens the bias . However, the en-

19The correspondence between the two tables is not exact because the dependency intro-
duced in (8 .2 .9) induces cross-sectional heteroscedasticity in the ~~'s ; hence, ~2 = 0.05 yields
an R2 of 0.05 only approximately .
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tries in Table 8.6 demonstrate that the effects of data-snooping may still be
substantial even in the presence of cross-sectional dependence .

8.3 Two Empirical Examples

To illustrate the potential relevance of data-snooping biases associated with
induced ordering, we provide two examples drawn from the empirical liter-
ature. The first example is taken from the early tests of the Sharpe-Lintner
CAPM, where portfolios were formed by sorting on out-of-sample betas . We
show that such tests can be biased towards falsely rejecting the CAPΜ if in-
sample betas are used instead, underscoring the importance of the elaborate
sorting procedures used by Black, Jensen, and Scholes (1972) and Fama and
MacBeth (1973) . Our second example concerns tests of the APΤ that reject
the zero-intercept null hypothesis when applied to portfolio returns sorted
by market value of equity. We show that data-snooping biases can account
for much the same results, and that only additional economic restrictions
will determine the ultimate source of the rejections .

8.3.1 Sorting By Beta

Although tests of the Sharpe-Lintner CAPΜ may be conducted on individual
securities, the potential benefits of using multiple securities are well known .
One common approach for allocating securities to portfolios has been to
rank them by their betas and then group the sorted securities . Beta-sorted
portfolios will exhibit more risk dispersion than portfolios of randomly cho-
sen securities, and may therefore yield more information about the CAPM's
risk-return relation . Ideally, portfolios would be formed according to their
true betas. However, since the population betas are unobservable, in prac-
tice portfolios have grouped securities by their estimated betas . For exam-
ple, both Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973)
use portfolios formed by sorting on estimated betas, where the betas are
estimated with a prior sample of stock returns . Their motivation for this
more complicated procedure was to to avoid grouping common estimation
or measurement error since, within the sample, securities with high esti-
mated betas will tend to have positive realizations of estimation error, and
vice versa for securities with low estimated betas .

Suppose, instead, that securities are grouped by betas estimated in-
sample. Can grouping common estimation error change inferences substan-
tially? To answer this question within our framework, suppose the Sharpe-
Lintner CAPΜ obtains so that

rat = F'srm~ + E~~,

	

EίEι

	

rmt~ _ ~,

	

E~EtEt~~ _ ~Éh

	

(8.3 .1)

where rte denotes the excess return of security i, rmt is the excess market
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return, and ~ j is the N x 1 vector of disturbances. To assess the impact of
sorting on in-sample betas, we require the squared correlation of ~xi and ~i .
However, since our framework requires that both ái and ßi be independently
and identically distributed, and since ßi is the sum of~i and estimation error
~Í, we assume ß= to be random to allow for cross-sectional variation in the
betas. Therefore, let

ß~ IID N(~p, ~~),

	

i = 1, 2, . . , N,

where each ß~ is independent of all ~~~ in (8.3 .1) . The squared correlation
between á1 and ß i may then be explicitly calculated as

COV2 ~~i, Ni~

	

_	S2

	

1

p2(άzι ßε) = Var[~z]Var[~~]

	

1 + Sm 1 + (σßσm/~~) T'

	

(8.3.2)

where ~,~ and ~m are the sample mean and standard deviation of the excess
market return, respectively, S„t - ~„~/gym is the ex post Sharpe measure,
and T is the number of time series observations used to estimate the ai's
and pi's .

The term ~~~mT/~É in (8 .3 .2) captures the essence of the errors-in-
variables problem for in-sample beta sorting . This is simply the ratio of the
cross-sectional variance in betas, ~~, to the variance of the beta estimation
error, ~É /(~mT) . When the cross-sectional dispersion of the betas is much
larger than the variance of the estimation errors, this ratio is large, implying
a small value for p 2 and little data-snooping bias. In fact, since the estima-
tion error of the betas declines with the number of observations T, as the
time period lengthens, in-sample beta sorting becomes less problematic .
However, when the variance of the estimation error is large relative to the
cross-sectional variance of the betas, then ~2 is large and grouping common
estimation errors becomes a more serious problem .

To show just how serious this might be ~n practice, we report in Table
8.7 the estimated p2 between ~x i and Ni for five-year subperiods from January
1954 to December 1988, where each estimate is based on the first 200 secu-
rities listed in the CRSP monthly returns files with complete return histories
within the particular five-year subsample, and the CRSP equal-weighted in-
dex. Also reported is the probability of rejecting the null hypothesis ai = 0
when it is true using a 5 percent test, assuming a sample of 2500 securities,
where the number of portfolios q is 10, 20, or 50 and the number of securities
per portfolio no is defined accordingly.2o

2o 0ur analysis is limited by the counterfactual assumption that the market model distur-
bances are cross-sectionally uncorrelated . But the simulation results presented in Sec~on 8 .2 .3
indicate that biases are still substantial even in the presence of cross-sectional dependence . A
more involved application would require a deeper analysis of cross-sectional dependence in
the ~~~'s .
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Table 8.7. Theoretical sizes ~f nominal 5 percent ~q-tests under the null hypothesis of the
Sharpe-Lintner CAPM using q in-sample beta-sorted portfolios with no securities per portfolio,
where R2 is the estimated squared correlation between ßi and ~ Í under the null hypothesis that
~; = 0 and that the ß+'s areIID normal random variables with mean and variance ~p and
~~ , respectively. Within each subsample, the estimate R 2 is based on the first 200 stocks in the
CRSP monthly returns files with complete return histories over the five-year subperiod, and the
CSRP equal-weighted index . For illustrative purposes, the theoretical size is computed under
the assumption that the total number of securities n

	

noq is fixed at 2500 .

Sample Period χ2
q= 10

	

q=20

	

q=50
ηο = 250

	

ηο = 125

	

ηο = 50

January 1954-December 1958 0.044 1 .000 1.000 1 .000
January 1959-December 1963 0.007 0.790 0.656 0.435
January 1964-December 1968 0.048 1 .000 1.000 1 .000
January 1969-December 1973 0.008 0.869 0.756 0.529
January 1974-December 1978 0.001 0.183 0.139 0.100
January 1979-December 1983 0.023 1 .000 1 .000 0.991
January 1984-December 1988

	

0.002

	

0.248

	

0.183

	

0.123

The entries in Table 8.7 show that the null hypothesis is quite likely to be
rejected even when it is true . For many of the subperiods, the probability of
rejecting the null is unity, and when only 10 beta-sorted portfolios are used,
the smallest size of a nominal 5 percent test is sti1118 .3 percent. We conclude,
somewhat belatedly, that the elaborate out-of-sample sorting procedures
used by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973)
were indispensable to the original tests of the Sharpe-Lintner CAPM .

8.3.2 Sorting By Size

As a second example of the practical relevance of data-snooping biases,
we consider Lehmann and Modest's (1988) multivariate test of a 15-factor
APΤ model, in which they reject the zero-intercept null hypothesis using
five portfolios formed by grouping securities ordered by market value of
equity. 21 We focus on this particular study because of the large number of
factors employed-our framework requires the disturbances ~~ of (8.2 .2)
to be cross-sectionally independent, and since 15 factors are included in
Lehmann and Modest's cross-sectional regressions, a diagonal covariance
matrix for ~ t is not implausible .

It is well-known that the estimated intercept ~i from the single-period
CAPΜ regression (excess individual security returns regressed on an inter-

2t See Lehmann and Modest (1988, Table l, last row) . Connor and Korajcryk (1988) report
similar findings .
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cept and the market risk premium) is negatively cross-sectionally correlated
with log size . 22 Since this ~i will in general be correlated with the estimated
intercept from a 15-factor APΤ regression , it is likely that the estimated APT
intercept and log size will also be empirically correlated . 23 Unfortunately,
we do not have a direct measure of the correlation of the APΤ intercept and
log size which is necessary to derive the appropriate null distribution after
induced ordering. 24 As an alternative, we estimate the cross-sectional R 2 of
the estimated CAPM alpha with the logarithm of size, and we use this R2 as
well as 2 R2 and 4R2 to estimate the bias attributable to induced ordering .

Following Lehmann and Modest (1988) , we consider four five-year time
periods from January 1963 to December 1982 . Xi is defined to be the loga-
rithm of beginning-of-period market values of equity. The ~i's are the inter-
cepts from regressions of excess returns on the market risk premium as mea-
sured by the difference between an equal-weighted NYSE index and monthly
Treasury bill returns, where the NYSE index is obtained from the Center for
Research in Security Prices (CRSP) database . The R2 's of these regressions
are reported in the second column of Table 8 .8. One cross-sectional regres-
sion of ~i on log size X Z is run for each five-year time period using monthly
NYSE-AMEX data from CRSP . We run regressions only for those stocks
having complete return histories within the relevant five-year period .

Table 8 .8 contains the test statistics for a 15-factor APΤ framework using
five size-sorted portfolios . The first four rows contain results for each of
the four subperiods and the last row contains aggregate test statistics . To
apply the results of Sections 8 .1 and 8.2 we transform Lehmann and Mod-
est's (1988) F-statistics into (asymptotic) ~ 2 variates .25 The total number
of available securities ranges from a minimum of 1001 for the first five-year
subperiod to a maximum of 1359 for the second subperiod . For each test
statistic in Table 8 .8 we report four different p-values: the first is with re-
spect to the null distribution that ignores data snooping, and the next three
are with respect to null distributions that account for induced ordering to
various degrees .

The entries in Table 8 .8 show that the potential biases from sorting by
characteristics that have been empirically selected can be immense . The

22See, for example, Banz (1981) and Brown, Kleidon, and Marsh (1983) .
23We recognize that correlation is not transitive, so if X is correlated with Y and Y with Z,

X need not be correlated with Z . However, since the intercepts from the two regressions will
be functions of some common random variables, situations in which they are independent are
the exception rather than the rule.

2aNor did Lehmann and Modest prior to their extensive investigations . If they are subject to
any data-snooping biases it is only from their awareness of size-related empirical results for the
single-period CAPM, and of corresponding results for the APΤ as in Chan, Chen, and Hsieh
(1985) .

25Since Lehmann and Modest (1988) use weekly data, the null distribution of their test
statistics is F5,2ao • In practice the inferences are virtually identical using the ~5 distribution
after multiplying the test sta~stic by 5 .
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Table 8.8. Comparison of p-values for Lehmann and Modest's (1988) tests of the APT with
and without correctingfor the effects of induced ordering . In the absence of data snooping, the
appropriate test statistics and their p-values (using the central ~ 2 distribution) are given in
Lehmann and Modest (1988, Table 1) and reported below in columns 4 and 5 (we transform
their F-statistics into ~ 2 variates for purposes of cmpar~son). Corresponding p-values that
ac~ountforinducedorderingarecalculatedincolumnslabelled "~ 2 (~ ;) p-value"(i = 1, 2 > 3)
(using the noncentral ~ 2 distribution), where ~~, ~ 2, and ~ 3 are noncentrality parameters
computed with R2, 2 R2 , and 4R2 , respectively . In all cases, five portfolios are formed from the
total number of securities; this yields five degrees offreedom for the ~ z statistics in the first four
rows, and 20 degrees of freedom for the aggregate χ 2 statistics.

Sample

	

N j{2
χ 2

	

~ί 2 (λ1)

	

ii 2(λ2~

	

χ2(λ3)

θρ

	

ρ-value

	

ρ-value

	

ρ-value

	

ρ-value

6301-6712 1001 0.015 13.70 0.018 0.687 0.315 0.131
6801-7212 1359 0.040 15.50 0.008 1.000 0.919 0.520
7301-7712 1346 0.033 10.20 0.070 1.000 0.963 0.720
7801-8212

	

1281

	

0.004

	

12.05

	

0.034

	

0.272

	

0.134

	

0.078

Aggregate

	

-

	

51 .45

	

0.00014

	

1 .000

	

0.917

	

0.298

~ι-values range from 0 .008 to 0.070 in the four subperiods according to
the standard theoretical null distribution, yielding an aggregate ~ι-value of
0.00014, considerable evidence against the null . When we adjust for the fact
that the sorting characteristic is selected empirically (using the R 2 from the
cross-sectional regression of ~t on Xt), the p-values for these same four sub-
periods range from 0.272 to 1 .000, yielding an aggregate p-value of 1 .000!
Therefore, whether or not induced ordering is allowed for can change in-
ferences dramatically .

The appropriate R 2 in the preceding analysis is the squared correlation
between log size and the intercept from a 15-factor APΤ regression, and
not the one used in Table 8 .8. To see how this may affect our conclusions,
recall from (8.1 .2) that the cross-sectional correlation between ~i and log
size can arise from two sources: the estimation error ~i in ~i, and the cross-
sectional dispersion in the "true" CAPΜ ~i (which is zero under the null
hypothesis) . Correlation between Xi and ~i will be partially reflected in
correlation between the estimated APΤ intercept and log size . The second
source of correlation will not be relevant under the APT null hypothesis since
under that scenario we assume that the 15-factor APΤ obtains and therefore
the intercept vanishes for all securities . As a conservative estimate for the
appropriate R 2 to be used in Table 8.8, we set the squared correlation equal

to 2 R2 and 4R2 , yielding the p-values reported in the last twο columns of

Table 8.8. Even when the squared correlation is only 4R 2 , the inferences
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change markedly after induced ordering, with p-values ranging from 0 .078
to 0.720 in the four subperiods and 0 .298 in the aggregate . This simple
example illustrates the severity with which even a mild form of data snooping
can bias our inferences in practice .

Nevertheless, it should not be inferred from Table 8 .8 that all size-related
phenomena are spurious. After all, the correlation between XZ and ~i may
be the result of cross-sectional variations in the population pi's, and not
estimation error. Even so, tests using size-sorted portfolios are still biased if
based on the same data from which the size effect was previously observed .
A procedure that is free from such biases is to decide today that size is an
interesting characteristic, collect ten years of new data, and then perform
tests on size-sorted portfolios from this fresh sample. Provided that the old
and new samples are statistically independent, this will yield a perfectly valid
test of the null hypothesis H, since the only possible source of correlation
between the Xi 's and the ~ i 's in the new sample is from the pi's (presumably
the result of some underlying economic relation between the two), and not
from the estimation errors. In such cases, induced ordering cannot affect
the distribution of the test statistics under the null hypothesis, and will yield
a considerably more powerful test against many alternatives .

8.4 How the Data Get Snooped

Whether the probabilities of rejection in Table 8.2 are to be interpreted
as size or power depends, of course, on the particular null and alterna-
tive hypotheses at hand, the key distinction being the source of correlation
between ái and the characteristic Xi . Since our starting point in Sectίon
8.1 was the assertion that this correlation is "spurious," we view the values
of Table 8.2 as probabilities of falsely rejecting the null hypothesis . We
suggested in Section 8 .1 that the source of this spurious correlation is cor-
relation between the characteristic and the estimation errors in ~i, since
such errors are the only source of variation in ~ i under the null . But how
does this correlation arise? One possibility is the very mechanism by which
characteristics are selected . Without any economic theories for motivation,
a plausible behavioral model of how we determine characteristics to be par-
ticularly "interesting" is that we tend to focus on those that have unusually
large squared sample correlations or R2 's with the ~i's . In the spirit of Ross
(1987), economists study "interesting" events, as well as events that are in-
teresting from a theoretical perspective . If so, then even in a collection of K
characteristics all of which are independent of the ~i's, correlation between
the ái's and the most "interesting" characteristic is artificially induced .

More formally, suppose for each of N securities we have a collection of
K distinct and mutually independent characteristics Yik , k = 1, 2, . . . , K,
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where Yik is the kth characteristic of the ith security. Let the null hypothesis
obtain so that ~i = 0, for all i, and assume that all characteristics are
independent of {ái } . This last assumption implies that the distribution of
a test statistic based on grouped &i's is unaffected by sorting on any of the
characteristics . For simplicity let each of the characteristics and the ~xi's be
normally distributed with zero mean and unit variance, and consider the
sample correlation coefficients :

N ~

	

~k ai - IX)	~i-~(ik- )(~		k = I,2, . . .,K, (8.4.~l~k =		_

~~Ni (Y~k -Yk) 2 ~~Nt(~~-~)2~

where Yk and ~ are the sample means of characteristic k and the ~i's, re-
spectively. Suppose we choose as our sorting characteristic the one that has
the largest squared correlation with the ái's, and call this characteristic Xi .
That is, Xi - Υi k•, where the index k* ~s defined by

pk* = Max pk .

	

(8.4.2)

This Xi is a new characteristic in the statistical sense, in that its distribution
is no longer the same as that of the Yik's . 26 It is apparent that Xi and
~i are not mutually independent since the ái's were used in selecting this
characteristic . By construction, extreme realizations of the random variables
{Xi} tend to occur when extreme realizations of {~i} occur.

To estimate the magnitude of correlation spuriously induced between
Xi and ~ i , first observe that although the correlation between Yik and ~ei
is zero for all k, E[pk] = 1/(N-1) under our normality assumption .
Therefore, 1/(N - 1) should be our benchmark in assessing the degree
of spurious correlation between Xi and ái . Since the pk's are well-known
to be independently and identically distributed Beta(2, 2(N - 2)) variates,

the distribution and density functions of ~k* , denoted by F* (ν) and f* (ν),
respectively, may be readily derived as 27

F* (ν) _ [Fß(ν)] K ,

	

v ε (0, 1),

	

(8.4.3)

f*(v) = K[Fß(ν)]K-ιfß(v),

	

ν E (0> 1),

	

(8.4.4)

26 Ιη fact, if we denote by Yk the N x 1 vector containing values of characteristic k for each
of the N securities, then the vector most highly correlated with ~ (which we have called X)
may be viewed as the concomitant Y~~ .~l of the Kth order statistic ~~~ :~~ = pk* . As in the
scalar case, induced ordering does change the distribution of the vector concomitants .

Z~That the squared correlation coefficients are IID Beta random variables follows from our
assumptions of normality and the mutual independence of the characteristics and the ~~'s [see
Stuart and Ord (1987, Chapter 16.28) for example] . The distribution and density functions
of the maximum follow directly from this .
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where F~ and fß are the cumulative distribution function and probability
density function of the Beta distribution with parameters 2 and 2 (N - 2) .
A measure of that portion of squared correlation between XZ with ái due to

sorting on pk is then given by

ι

Υ =- ΕίΡk>~ -E~PkI = ~ of* (ν)dv- N 1 1 .

	

(8.4.5)
ο

For 25 securities and 50 characteristics, y is 20 .5 percent!2ß With 100 securi-
ties, y is still 5 .4 percent and only declines to 1 .1 percent for 500 securities .
With only 25 characteristics, the values of y for 25, 100, and 500 securities
fall to 16.4, 4 .2, and 0.8 percent, respectively. However, these smaller values
of y can still yield misleading inferences for tests based on few portfolios,
each containing many securities . This is seen in Table 8 .9, in which the
theoretical sizes of 5 percent tests with R 2's equal to the appropriate y for
each cell are displayed . For example, the first entry in the first row of Table
8.9, 0 .163, is the size of the 5 percent portfolio-based test with five portfolios
and five securities in each, where the R 2 used to perform the calculation is
the y corresponding to 25 securities and 25 characteristics, or 16.4 percent .
As the number of securities per portfolio grows, y declines but the bias
worsens-with 50 securities in each of five portfolios, y is only 1 .7 percent
but the actual size of a 5 percent test is 26 .4 percent . Although there is in
fact no statistical relation between any of the characteristics and the ~xi's, a
procedure that focuses on the most striking characteristic can create spurious
statistical dependence .

As the number of securities N increases, this particular source of depen-
dence becomes less important since all the sample correlation coefficients
p~ converge almost surely to zero, as does y . However, recall from Table 8 .2
that as the sample size grows the bias increases if the number of portfolios
is held fixed; hence, as Table 8 .9 illustrates, a larger N and thus a smaller y

need not imply a smaller bias . Moreover, since y is increasing in the number
of characteristics K, we cannot find refuge in the law of large numbers with-
out weighing the number of securities against the number of characteristics
and portfolios in some fashion . Table 8.9 provides one informal measure
of this trade-off.

2a Note that ~ is only an approximation to the squared population correlation :
2

Ε(Χ~ - Ε[Χ])(ά~ - Ε[ά])	

[~Ε(Χ; - Ε[Χ]) 2 ' ~Ε(άί - Ε[ά]) 2 .

However, Monte Carlo simulations with 10,000 replications show that this approximation is
excellent even for small sample sizes . For example, fixing K at 50, the correlation from the
simulations is 22 .82 percent for N = 25, whereas (8 .4 .5) yields y = 20.47 percent ; for
N = 100 the simulations yield a correlation of 6 .25 percent, compared to a y of 5 .39 percent .
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Table 8.9. Theoretical sizes of nominal 5 percent ~9-tests of H : ~, = 0 (i = 1, . . . , n)

usingtheteststatistic~ p , where~p =- no ~~_~ ~~~~~, and~k = (1/na) ~k4

	

~~ :N~
j=(k-1)q}1

	

~~

is constructedfrom portfolio k, with portfolios formed by sorting on some characteristic correlated
with estimates á ; . This induced ordering alters the null distribution of ~p from ~4 to (1 -
R2 ) • ~9(~), where the n~ncentrality parameters is a function ~f the number q of portfolios,
the number no of securities in each portfolio, and the squared correlation coefficient R2 between
~; and the sorting characteristic. The values ofR2 used for the size calculations vary with the
total number of securities n o q and with K, the total number ~f independent characteristics from
which the most "interesting" is selected.

4 ηο =5

	

ηο =10

	

ηο =20

	

ηο =25

	

ηο =50

Κ = 25
5

	

0.163

	

0.216

	

0.246

	

0.253

	

0.264
10

	

0.150

	

0.182

	

0.200

	

0.202

	

0.210
20

	

0.125

	

0.144

	

0.153

	

0.155

	

0.159
25

	

0.117

	

0.132

	

0.140

	

0.142

	

0.145
50

	

0.096

	

0.104

	

0.109

	

0,110

	

0.112

Κ = 50
5

	

0.197

	

0.270

	

0.311

	

0.319

	

0.337
10

	

0.183

	

0.228

	

0.254

	

0.259

	

0.270
20

	

0.151

	

0.178

	

0.192

	

0.195

	

0.201
25

	

0.141

	

0.163

	

0.175

	

0.177

	

0.182
50

	

0.112

	

0.125

	

0.131

	

0.133

	

0.136

Perhaps even the most unscrupulous investigator might hesitate at the
kind of data snooping we have just considered . However, the very review
process that published research undergoes can have much the same effect,
since competition for limited journal space tilts the balance in favor of the
most striking and dissonant of empirical results . Indeed, the "Anomalies"
section of the journal of Economic Perspectives is the most obvious example
of our deliberate search for the unusual in economics. As a consequence,
interest may be created in otherwise theoretically irrelevant characteristics .
In the absence of an economic paradigm, such data-snooping biases are not
easily distinguishable from violations of the null hypothesis . This inability
to separate pretest bias from alternative hypotheses is the most compelling
criticism of "measurement without theory."

8.5 Conclusion

Although the size effect may signal important differences between the eco-
nomic structure of small and large corporations, how these differences are
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manifested in the stochastic properties of their equity returns cannot be
reliably determined through data analysis alone . Much more convincing
would be the empirical significance of size, or any other quantity, that is
based on a model of economic equilibrium in which the characteristic is re-
lated to the behavior of asset returns endogenously . Our findings show that
tests using securities grouped according to theoretically motivated correla-
tions between Xi and ~i can be powerful indeed-interestingly, tests of the
APΤ with portfolios sorted by such characteristics (own-variance and divi-
dend yield) no longer reject the null hypothesis (see Lehmann and Modest,
1988) . Sorting on size yields rejections whereas sorting on theoretically
relevant characteristics such as own-variance and dividend yield does not .
This suggests that data-instigated grouping procedures should be employed
cautiously.

It is widely acknowledged that incorrect conclusions may be drawn from
procedures violating the assumptions of classical statistical inference, but
the nature of these violations is often as subtle as it is profound. In observ-
ing that economists (as well as those in the natural sciences) tend to seek
out anomalies, Merton (1987, p . 104) writes : "All this fits well with what
the cognitive psychologists tell us is our natural individual predilection to
focus, often disproportionately so, on the unusual . . . . This focus, both
individually and institutionally, together with little control over the num-
ber of tests performed, creates a fertile environment for both unintended
selection bias and for attaching greater significance to otherwise unbiased
estimates than is justified ." The recognition of this possibility is a first step in
guarding against it . The results of our paper provide a more concrete rem-
edy for such biases in the particular case of portfolio formation via induced
ordering on data-instigated characteristics . However, nonexperimental in-
ference may never be completely free from data-snooping biases since the
attention given to empirical anomalies, incongruities, and unusual correla-
tions is also the modus operandi for genuine discovery and progress in the
social sciences. Formal statistical analyses such as ours may serve as primitive
guides to a better understanding of economic phenomena, but the ability
to distinguish between the spurious and the substantive is likely to remain
a cherished art.



Maximizing Predictability in the
Stock and Bond Markets

9.1 Introduction

THE SEARCH FOR PREDICTABILITY in asset returns has occupied the attention
of investors and academics since the advent of organized financial mar-
kets. While investors have an obvious financial interest in predictability, its
economic importance can be traced to at least three distinct sources : im-
plications for how aggregate fluctuations in the economy are transmitted
to and from financial markets, implications for optimal consumption and
investment policies, and implications for market efficiency. For example,
several recent papers claim that the apparent predictability in long-horizon
stock return indexes is due to business cycle movements and changes in ag-
gregate risk premia . l Others claim that such predictability is symptomatic
of inefficient markets, markets populated with overreacting and irrational
investors . 2 Following both explanations is a growing number of propo-
nents of market timing or tactical asset allocation, in which predictability is
exploited, ostensibly to improve investors' risk-return trade-offs . 3 Indeed,
Roll (1988, p . 541) has suggested that "The maturity of a science is often
gauged by its success in predicting important phenomena."

For these reasons, many economists have undertaken the search for
predictability in earnest and with great vigor . Indeed, the very attempt to
improve the goodness-of--fit of theories to observations-Learner's (1978)
so-called specification searches-can be viewed as a search for predictability.

t See Fama and French (1990) and Ferson and Harvey (1991b) for example .
2 For example, see DeBondt and Thaler (1985), Lehmann (1990) , and Chopra et al . (1992) .
sA few of the most recent examples include Clarke et al . (1989), Droms (1989), Vandell

and Stevens (1989), Hardy (1990), Kester (1990), Lee and Rahman (1990, 1991), Sy (1990),
Weigel (1991), Shilling (1992), and Wagner et al. (1992) . However, see Samuelson (1989,
1990) for a caution against such strategies.
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But as important as it is, predictability is rarely maximized systematically
in empirical investigations, even though it may dictate the course of the
investigation at many critical junctures and, as a consequence, is maximized
implicitly over time and over sequences of investigations .

In this chapter, we maximize the predictability in asset returns explic-
itly by constructing portfolios of assets that are the most predictable, ~n a
sense to be made precise below. Such explicit maximization can add several
new insights to findings based on less formal methods . Perhaps the most
obvious is that it yields an upper bound to what even the most industrious
investigator can achieve in his search for predictability among portfolios . 4
As such, it provides an informal yardstick against which other findings may
be measured. For example, approximately 10% of the variation in the CRSP
equal-weighted weekly return index from 1962 to 1992 can be explained by
the previous week's returns-~s this large or small? The answer will depend
on whether the maximum predictability for weekly portfolio returns is 15
or 75% .

More importantly, the maximization of predictability can direct us to-
ward more disaggregated sources of persistence and time variation in asset
returns, in the form of portfolio weights of the most predictable portfolio,
and sensitivities of those weights to specific predictors, e.g ., industrial pro-
duction, dividend yield . A primitive example of this kind of disaggregation
is the lead/lag relation among size-sorted portfolios uncovered by Lo and
MacKinlay (1990b) , in which the predictability of weekly stock index returns
is traced to the tendency for the returns of larger capitalization stocks to lead
those of smaller stocks . The more general framework that we introduce be-
low includes lead/lag effects as a special case, but captures predictability
explicitly as a function of time-varying economic-risk premia rather than as
a function of past returns only .

In fact, the evidence for time-varying expected returns in the stock and
bond markets in the form of ex-ante economic variables that can forecast
asset returns is now substantial . 5 Our results add to those of the existing liter-
ature in three ways : (1) We estimate the maximally predictable portfolio (MPP) ,
given a specific model of time-varying risk premia ; (2) we compute the sen-
sitivities of this ΜΡΡ with respect to ex-ante economic variables ; and (3) we
trace the sources of predictability, via the portfolio weights of the ΜΡΡ, to spe-

4As will become apparent below, we maximize predictability across portfolios, holding
fixed the set of regressors used to forecast asset returns . In a related paper, Foster et al.

(1995) maximize predictability across subsets of regressors, holding fixed the asset return to
be predicted . Therefore, our upper bound obtains over a fixed set of regressors, while Foster
et al .'s obtains over a fixed set of assets .

S See, for example, Gibbons and Ferson (1985), Chen et al . (1986), Keim and Stambaugh
(1986), Engle et al. (1987), Fersoη et al . (1987), Lo and MacKinlay (1988b), Ferson (1989,
1990), Ferson and Harvey (1991), Fama and French (1990), Jegadeesh (1990), and Chen
(1991) .
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cific industry sectors, market-capitalization classes, and stock/bond/utilities
classes, over various holding periods .

Of course, both implicit and explicit maximization of predictability are
forms of data snooping or data mining and may bias classical statistical infer-
ences. But the biases from an explicit maximization are far easier to quantify
and correct for-which we do below-than those from a series of informal
and haphazard searches . ó Moreover, we develop a procedure for maximiz-
ing predictability that does not impart any obvious data-snooping biases
(although subtle biases may always arise), using an out-of-sample rolling
estimation approach similar to that of Fama and MacBeth (1973) . We use
a subsample to estimate the optimal portfolio weights, form these portfo-
lios with the returns from an adjacent subsample, and obtain estimates of
predictability by rolling through the data .

When applied to monthly stock and bond returns from 1947 to 1993,
we find that predictability can be increased considerably both by portfolio
selection and by horizon selection . For example, if we consider as our
universe of assets the 11 portfolios formed by industry or sector classification
according to SIC codes, for an annual return horizon the MPP has an R 2 of
53%, whereas the largest R 2 of the 11 regressions of individual sector assets
on the same predictors is 40 percent .

Moreover, the weights of the ΜΡΡ change dramaticallywith the horizon,
pointing to differences across market capitalization and sectors for forecast-
ing purposes. For example, using the 11 sector assets as our universe and
a monthly return horizon, the ΜΡΡ has a long position in the trade sector
(with a portfolio weight of 36%), and a substantial short position in the
durables sector (with a portfolio weight of -138%) . However, at an annual
return horizon, the ΜΡΡ is short in the trade sector (-70%), and long in
durables (126%) . Although the portfolio weights are much less volatile for
the shortsales-constrained cases, they still vary considerably with the return
horizon. Such findings suggest distinct forecasting horizons for the various
sector assets, and may signal important differences in how such groups of
securities respond to economic events .

In Section 9 .2, we motivate our interest in the ΜΡΡ by showing that the
typical two-step approach of searching for predictability-fitting a contem-
poraneous linear multifactor model, and then predicting the factors-may
significantly understate the true magnitude of predictability in asset returns
and overstate the number of factors required to capture the predictability.
In contrast, the ΜΡΡ provides a more accurate assessment of the predictable

6For the biases of and possible corrections to such informal specification searches see
Learner (1978), Ross (1987), Iyengar and Greenhouse (1988), Lo and MacKinlay (1990a), and
Foster et al . (1995) .
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variation . The MPP is developed more formally in Section 9 .3 and an ex-
ample of its economic relevance is provided. In Section 9.4, we apply these
results to monthly stock and bond data from 1947 to 1993 and estimate the
ΜΡΡ for three distinct asset groups : a 5-asset group of stocks, bonds, and
utilities ; an 11-asset group of sector portfolios ; and a 10-asset group of size-
sorted portfolios . To correct for the obvious biases imparted by maximizing
predictability, we report Monte Carlo results for the statistical inference of
the maximal R2 's in Section 9 .5. To gauge the economic significance of

the MPP, in Section 9 .6 we present three out-of-sample measures of the
portfolio's predictability, measures that are not subject to the most obvious
kinds of data-snooping biases associated with maximizing predictability . We
conclude in Section 9 .7 .

9.2 Motivation

An increasingly popular approach to investigating predictability in asset re-
turns is to follow a two-step procedure : (1) Construct a linear factor model
of returns based on cross-sectional explanatory power, e.g ., factor analysis,
principal components decomposition, and (2) analyze the predictability of
these factors . Such an approach is motivated by the substantial and still-
growing literature on linear pricing models such as the CAPM, the APT,
and its many variants in which expected returns are linearly related to con-
temporaneous "systematic" risk factors . Because time variation in expected
returns can be a source of return predictability, several recent studies have
followed this two-step procedure, e .g ., Chen (1991), Ferson and Harvey
(1991a, 1991b, 1993), and Ferson and Korajcyzk (1995) .

While the two-step approach can shed considerable light on the nature
of asset return predictability-especially when the risk factors are known-it
may not be as informative when the factors are unknown . For example, it is
possible that the set of factors that best explains the cross-sectional variation
in expected returns is relatively unpredictable, whereas other factors that
can be used to predict expected returns are not nearly as useful contem-
poraneously in capturing the cross-sectional variation of expected returns .
Therefore, focusing on the predictability of factors that are important con-
temporaneously may yield a very misleading picture of the true nature of
predictability in asset returns .

9.2.1 Predicting Factors vs . Predicting Returns

To formalize this intuition, consider a simple example consisting of two
assets, A and B, which satisfy a linear two-factor model . In particular, let Rt
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denote the (2 x 1) vector of de-meaned asset returns [Rat Rb 1 ]' and suppose
that:

Rι = διFιι ~- δ2F2ι + εε, (9.2 .1)

where ~~ _- [~a~ ~~~]~> ~2 =- [ßa2 ~62]~, E~ _- [Ear E~~]' is vector white noise
with covariance matrix ~ÉI, and Fi t and Fl t are the two factors that drive the
expected returns of A and B . Without loss of generality, we assume that the
two factors are mutually uncorrelated at all leads and lags, and have zero
mean and unit variance ; hence,

Ε[Fιε] = Ε[F2ι] = 0,

	

Vαr[Fιε] = Var[F2τ] = 1,

	

(9.2.2)

Cov[F~s, F2~] = 0 b s, t .

	

(9.2.3)

Now suppose that F~ t is unpredictable through time, while Fl t is predictable .
In particular, suppose that Fi t is a white-noise process, and that Fl t is an

AR(1) :

Fi t ^~ White Noise,

	

F2ι = ~BF2~-~ + ~i,

	

Ißß ~ [0, 1),

	

(9.2.4)

where {fi t ) is a white-noise process with variance 1-ß 2 and independent of

{~ t } and {Fi t } . Under these assumptions, expected returns are explained by
two contemporaneous factors, of which one is white noise and the other
is predictable . For later reference, we observe that under this linear two-
factor model the contemporaneous covariance matrix and the first-order
autocovariance matrix of R t are given by

Γο = Vαr[Rι] = διδί + δ2δ2 -}- σΈΙ

	

(9.2.5)

Γι = Cον[Rι> Rτ-ι] = δ2δ2β •

	

(9.2 .6)

For the remainder of this section, we shall assume that while (9.2 .1) is the
true data-generating process, it is unknown to investors .

When the true factors Fi t and Fl t are unobserved, the most common
approach to estimating (9.2 .1) is to perform some kind of factor analysis or
principal-components decomposition (see, e.g., Roll and Ross, 1980 ; Brown
and Weinstein, 1983; Chamberlain, 1983 ; Chamberlain and Rothschild,
1983 ; Lehmann and Modest, 1985; Connor and Korajczyk, 1986, 1988) .
For this reason, a natural focus for the sources of predictability are the
extracted factors or principal components. In our simple two-asset example,
the first principal component is a portfolio ~PCi which corresponds to the
normalized eigenvector of the largest eigenvalue of the contemporaneous
covariance matrix ~o . This yields the portfolio return

Rπcι,ε =- ωrcιR~,

	

(9.2.7)
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which may be interpreted as the linear combination óf the two assets that
"explains" as much of the cross-sectional variation in returns as possible . In
this sense, RPC~,~ may be viewed as the (cross-sectionally) "most important"
factor. Therefore, this is a natural focus for the sources of predictability in
expected returns .

How predictable is this most important factor? One measure is the
theoretical or population R2 of a regression of RPCi,~ on the lagged factors
Fι ι _i and F2 t_ι . This is given by

R2 f~cι,ι~ = (ωΡCιδ2β)2

	

(9.2.8)
ωrcι Γοωrcι

Observe that only the factor loading ~ 2 of factor 2 appears in the numerator
of (9.2 .8) . Since factor 1 is white noise, it contributes nothing to the pre-
dictability of RPC~,~ ; hence ~~ plays no role in determining the R 2 . However,
~i does appear implicitly in the denominator of (9.2 .8) since it affects the
variance of Rrc~,~ (see (9.2 .5) ) . Therefore, it is easy to see how an important
cross-sectional factor may not have much predictability. By increasing the
factor loading ~i, the first factor becomes increasingly more important in
the cross section, but holding other parameters constant, this will decrease
the predictability of R~c~,~ •

A second measure of predictability is the squared first-order autocorre-
lation coefficient of RPCi, r , which corresponds to the R2 of the regression of

R~c~,i on RPC~,~-~ • This is given by the expression

ί(ω' δ 2 2
Ρi LRrcι,ιl = 	Ρcι 2)

β7

	

(9.2.9)
(ωrcιΓοωπcι) 2

For similar reasons, it is apparent from (9.2 .9) that an important cross-
sectional factor need not reflect much predictability .

9.2.2 Numerical Illustration

For concreteness, consider the following numerical example :

[10.01

	

C0.51
R`

	

15.0 Fιι + 1.0J F2ι+εξ,

E~~~~t~ = aÉh

	

~~ = 16>

	

~g = 0.90 .

	

(9.2.11)

Under these parameter values, the first principal-component portfolio Rrc~, t
accounts for 95.5% of the cross-sectional variation in returns, i .e ., when the
eigenvalues of ~~ are normalized to sum to one, the largest eigenvalue is

(9.2.10)
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0.955 . However, the predictability of RPCι, t as measured by R 2 [RPCi,~] in

(9.2 .8) is a trivial 0 .3%, and its squared own-autocorrelation is 0 .0010%,
despite the fact that factor 2 has an autocorrelation coefficient of 90%!

In Section 9 .3, we shall propose an alternative to cross-sectional factors
such as RPCi, i for measuring predictability: the MPP. In contrast to RPC.~,~
which is constructed by maximizing variance, the ΜΡΡ is constructed by
maximizing ~~redictability or R2 . For this reason, it provides a more direct
measure of the magnitude and sources of predictability in asset returns
data. Although we develop the ΜΡΡ more formally in the next section, it is
instructive to anticipate those results by comparing the predictability of the
ΜΡΡ to that of RPC~,~ in this two-asset example .

As we shall see in Section 9 .3, the ΜΡΡ wMPP is defined to be the nor-
malized eigenvector corresponding to the largest eigenvalue of the matrix

V-i ~o , where ~ o = ~2 ~2~2 is the variance-covariance matrix of the one-
step-ahead forecast of R r using Fι ι-i and F2 t _ι (see Section 9 .3 for further
details and discussion) . Substituting ωMPP for wPC~ in (9.2 .7) and (9.2 .8)
then yields a comparable measure of predictability for the ΜΡΡ: R 2 [RMPP, t ] .

By calibrating the parameter values of (9.2.1) to monthly data (mea-
sured in percent per month), we can compare the predictability of the ΜΡΡ
to the PC1 portfolio directly. In particular, if we let

[3.5] Fit +
C5a201

Fei + ~~>

	

(9.2.12)

Ε[ει ε~] = σΈΙ,

	

σ~ = 16,

	

β = 0.90

	

(9.2.13)

and let ~a2 vary, we can see how well the two portfolios ~PCi and ωMPP reflect
the predictability inherent in the two assets .

Table 9 .1 reports the R2 measures for both portfolios under two different
values for ß a2. In panel (a) , δ a2 is set to 0 .50, in which case the stocks A and B
have R2 's of 0 .3 and 38 .0%,respectively, and monthly standard deviations of
8.5 and 7 .3%,respectively. In this case, observe that the PC1 portfolio has an
R2 of only 9.6% and a squared own-autocorrelation X 2 (1) of only 1 .1%,and
this despite the fact that the squared own-autocorrelation of stock B is 17 .9% .
In contrast, the ΜΡΡ has an R 2 of 45.0% and a squared own-autocorrelation
of 24.9% .

As δ a2 is increased to 7 .5, factor 2 becomes more important in determin-
ing the expected return of stock A, and its monthly variance also increases
to 11 .3% . In this case, the PC1 portfolio more accurately reflects the pre-
dictability in A and B, with an R 2 and squared own-autocorrelation of 39.7
and 19.5%, respectively. Nevertheless, the ΜΡΡ exhibits slightly more pre-
dictability, with an R2 and squared own-autocorrelation of 41.6 and 21 .4%,

respectively.
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Table 9.1 . Comparison of predictability of PCI portfolio and MPΡ for a
universe of two assets, A and B°

Asset

	

~~

	

~b

	

R2 [Asset]

	

p~ [Asset]

(a) ~~2 = 0 .50
Stock A

	

1 .00

	

0.00

	

0.003

	

0.000
Stock B

	

0.00

	

1 .00

	

0.380

	

0.179
PCl portfolio

	

0.58

	

0.42

	

0.096

	

0.011
MPP

	

-0.51

	

1 .51

	

0.450

	

0.249
(b) ß a2 = 7.50

Stock A

	

1 .00

	

0.00

	

0.355

	

0.155
Stock B

	

0.00

	

1 .00

	

0.380

	

0.179
PC1 portfolio

	

0.64

	

0.36

	

0.397

	

0.195
ΜΡΡ

	

0.33

	

0.67

	

0.416

	

0.214

"Returns satisfy a two-factor linear model where the first factor is white noise
and the second factor is an AR(1) with autoregressive coefficient 0 .90 . Pre-
dictability is measured in two wads : the population R2 of the regression of
each asset on the first lag of both factors, and the population squared own-
autocorrelation pi of each asset's returns . The return-generating processes
for both assets are calibrated to correspond roughly to monthly returns (see
the text for details) .

9.2.3 Empirical Illustration

To illustrate the empirical relevance of the difference in the R 2 of the PC1
portfolio and the ΜΡΡ in this simple context, we anticipate the more de-
tailed empirical analysis of Section 9 .4 by performing the following simple
calculation here . Using a sample of 11 sector portfolio returns and 6 pre-
determined factors, we calculate the sample R 2 (see Section 9 .4 for details
about these portfolios and factors) . Using monthly returns for the period
1947:1 to 1993 :12, the sample R 2 of the ΜΡΡ is 12 .0%, whereas the sample
R2 of PCl is only 7 .2% . Similar results hold for annual returns . Using an-
nual returns, the ΜΡΡ R 2 is 52.5% and the PCl R2 is 35.5%. These results
show that, empirically, the differences in the level of predictability of the
returns on these two portfolios can be substantial .

This simple two-factor example illustrates the fact that while the PC1
portfolio may be interesting in studies of cross-sectional relations among
asset returns, the ΜΡΡ is more directly relevant when predictability is the
object of interest . Furthermore, the sample R2 results suggest that the
difference can be empirically important. In the following sections, we shall
define the ΜΡΡ more precisely and examine its statistical and empirical
properties at length .
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9.3 Maximizing Predictability

To define the predictability of a portfolio, we require some notation . Con-
sider a collection of n assets with returns R~ _- ~R~~ R2~ • • • R,,~]' and for
convenience, assume the following throughout this section :

(Al ) Rt is a jointly stationary and ergodic stochastic process with finite
expectation E[Rt ] _ ~ - [~i ~2 • • • ~ n ]' and finite autocovari-
ance matrices E[(R~_k - ~)(Rr - ~)'] _ ~k, where, with no loss of
generality, we take k > 0 since ~ k = ~' k .

For convenience, we shall refer to these n assets as primary assets, assets to
be used to construct the MPP, but they can be portfolios too .

Denote by Zi an (n x 1) vector of de-meaned primary asset returns, i .e .,
Zr - Rt - ~, and let Z~ denote some forecast of Zr based on information
available at time t - 1, which we denote by the information set ~~_i. For
simplicity, we assume that Zt is the conditional expectation of Zt with respect
to ~ r_~, i .e .,

Ζι = Ε[Ζt Ι Ωι-ι],

	

(9.3.1)

which would be the optimal forecast under a quadratic loss function (al-
though we are not assuming that such a loss function applies) . We may then
express Zz as

Ζι = Ε[Ζι Ι Ωτ-ι] + ~~ = Ζι + ει ,

	

(9 .3.2)

Ε[ει Ι Ωτ-ι] = 0,

	

Var[εε Ι Ωτ-ι] = Σ.

	

(9.3 .3)

Included in the information set ~ t_i are ex-ante observable economic vari-
ables such as dividend yield, various interest-rate spreads, earnings announce-
ments, and other leading economic indicators . Therefore, with a suitably
defined intercept term, (9.3 .2) and (9.3.3) contain conditional versions
of the CAPΜ (see Merton, 1973 ; Constantinides, 1980; and Bossaerts and
Green, 1989), a dynamic multifactor APΤ (Ohlson and Garman, 1980, and
Connor and Korajcryk, 1989), and virtually all other linear asset pricing
models as special cases .

Assumption (Al) is made for notational simplicity, since stationańty allows us to elimi-
nate time indexes from population moments such as ~ and ~k . However, there are several
alternatives to stationarity and ergodicity that permit time-varying unconditional moments and
still satisfy a law of large numbers and central limit theorem, which is essentially all we require
for our purposes . The qualitative features of our results will not change under such alterna-
tives (e .g., weak dependence with moment conditions), but would merely require replacing
expectations with corresponding probability limits of suitably defined time averages . See, for
example, White (1984) and Lo and MacKinlay (1990b) .
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We also assume throughout that the p i's are conditionally homoskedas-
tic and that the information structure {fi r } is well behaved enough to ensure
that Zt is also a stationary and ergodic stochastic process . $

9.3. I Maximally Predictable Portfolio

Let y denote a particular linear combination of the primary assets in Zt , and
consider the predictability of this linear combination, as measured by the
well-known coefficient of determination :

where

Var[y'ε ι ]

	

Var[y'Ζι ]

	

y'Γογ
R2(Υ) = 1 -

	

_

	

_
Var[y'Ζt ]

	

Var[y'Ζt ]

	

y'Γ~y'
(9.3.4)

~o - Var[Z~] = E[ZιZt ],

	

(9.3.5)

~ o =_ Var[Ζ t ] = E[ZtZ~] .

	

(9.3.6)

R2 (y) is simply the fraction of the variability in the portfolio return ~'Zt
explained by its conditional expectation, y'Zt . Maximizing the predictabil-
ity of a portfolio of Z~ then amounts to maximizing R2 (y) subject to the
constraint that y is a portfolio, i .e ., y'~ = 1 . But since R2 (y) = R2 (cy)
for any constant c, the constrained maximization is formally equivalent to
maximizing R2 over all y, and then resealing this globally optimal y so that
its components sum to unity .

Such a maximization is straightforward and yields an explicit expression
for the maximum R2 and its maximizer, given by Gantmacher (1959) and
Box and Tiao (1977) . 9 Specifically, the maximum of R 2 (ß) with respect
to y is given by the largest eigenvalue ~* of the matrix B - ~~1~ 0 , and is
attained by the eigenvector ~* associated with the largest eigenvalue of B .
Therefore, when properly normalized, ~* is the MPP .~o

Observe that the MPP has been derived from the unconditional co-
variance matrices (9.3.5) and (9.3.6) and, as a result, it is constant over
time. A time-varying version of the ΜΡΡ also can be constructed, simply by
replacing (9.3.5) and (9.3.6) with their conditional counterparts . In that
case, the ΜΡΡ must be recalculated in each period since the matrix Bi will
then be a function of the conditioning variables and will vary through time .

ft Our analysis can easily be extended to conditionally heteroskedastic errors, but at the
expense of notational and computational complexity . See Section 9 .3 .1 for further discussion .

9~wo closely related techniques are the multwariate index model and the reduced rank
regression model ; see Reinsel (1983) and Velu, Reinsel, and Wichern (1986) .

to Similarl~, the minimum of R 2 (y) with respect to y is given by the smallest eigenvalue ~* of
B and is attained by the eigenvector y* associated with the smallest eigenvalue of B. Therefore,
y* is the minimally predictable portfolio, i.e ., the portfolio that is closest to a random walk .
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However, to do this we require a fully articulated model of the conditional
covariances of both Z~ and Z~, which then must be estimated . ll Although
this is beyond the scope of this chapter, recent empirical evidence suggests
that the conditional moments of asset returns do vary through time (see
Bollerslev, Chou, and Kroner, 1992, for a review), hence the conditional
MPP may be an important extension from an empirical standpoint .

9.3.2 Example: OneFactor Model

To develop some intuition for the economic relevance of the ΜΡΡ, consider
the following example. Suppose we forecast excess returns Z t with only a

single factor X~_l, so that we hypothesize the relation

Zi = ljXz-~ + E~,

	

(9.3.7)

E[~~ I X~-~] = 0,

	

Var[~~ I X~-~] _ ~,

	

(9.3.8)

where ~3 is an (n x 1) vector of factor loadings, and ~ is any positive definite
covariance matrix (not necessarily diagonal) . Such a relation might arise
from the CAPM, in which case Xt_1 is the period t-i forecast of the market
risk premium at time t .12 In this simple case, the relevant matrices may be
calculated in closed form as

~o - Var[Zt ] _ ~~,ß,ß',

	

(9.3.9)

~~ - Var[Zi ] _ ~X,O/3' + ~,

	

(9.3.10)

where ~~ = Var[Χ1_ι] . The ΜΡΡ y* and its R 2 are then given b~

y * _ ~ ~l ~ ~- ~,Q,

	

(9.3.11)

~ 2,Q'Σ-ι,β
λ* = R2(Υ*) =

	χ	
1 + σχ,β'Σ

-1 ρ (9.3.12)

11 See, for example, Bollerslev, Engle, and Wooldridge (1988), Gallant and Tauchen (1989),
and Hamilton (1994, Chapter 21) .

~21n particular, (9 .3 .8) may be viewed as a conditional version of a linear factor model
where the factor Zt is a linear function of economic variables observable at t-1 (namely, X ß _ 1 ) .
Examples of such a specification in the recent literature include Cheπ, Roll, and Ross (1986),
Engle, Lilien, and Robbins (1987), Ferson (1989, 1990), Ferson and Harvey (1991b), and
Harvey (1989). To underscore this factor-pricing interpretation, we have referred to ~i as the
vector of factor loadings and will refer to the predictor Xt _1 as a conditional factor . However, it
should be emphasized that a structural factor-model for our return-generating process, one
that links expected returns to contemporaneous risk premia (such as the security market line of
the CAPM) , is not required b~ our framework . But even if such a structural factor-model exists,
the contemporaneous factors or risk premia are almost always written as linear functions of
ex-ante economic variables, especially when applying them to time-series data . Therefore, the
simple specification (9 .3 .8) is considerably more general than it may appear to be .
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To develop further intuition for (9 .3.11) and (9 .3.12) , suppose that ~ _ ~É I,
so that the MPP and its R2 reduce to

y*
_ ~

~i~ ~3,

	

(9.3.13)

~* = R2(Y*) =
AQ~~I~É

	

(9.3.14)
1 + ~i',ß~~ /~É

Not surprisingly, with cross-sectionally uncorrelated errors, the ΜΡΡ has
weights directly proportional to the assets' betas . The larger the beta, the
more predictable that asset's future return will be ceteris paribus; hence the
ΜΡΡ should place more weight on that asset . As expected, R2 (ß*) is an
increasing function of the signal-to-noise ratio ~~ /~E . But interestingly, the
ΜΡΡ weights y* are not, and do not even depend on the ~~ 's . This, of
course, is an artifact of our extreme assumption that the assets' variances
are identical. I~ for example, we assumed that ~ were a diagonal matrix
with elements ~2, j = 1, . . . , n, then the portfolio weights y~* would be

proportional to ß~/~~2 . The larger the ß~, the more weight asset j will have

in the ΜΡΡ, and the larger the ~~2 , the less weight it will have .
Since the level of predictability of y* does depend on how important

X~-~ is in determining the variability of Z r , in the case where ~ _ ~É I as the
signal-to-noise ratio increases the R 2 of the ΜΡΡ also increases, eventually
approaching unity as ~~ /~É increases without bound . Also, from (9.3.14)
it is apparent that R2 (y*) increases with the number of assets ceteris paribus,
since /.i'/3 is simply the sum of squared betas . Of course, even in the most
general case, R 2 (y*) must be a nondecreasing function of the number of
assets because it is always possible to put zero weight on any newly introduced
assets .

9.4 An Empirical Implementation

To implement the results of Section 9.3, we must first develop a suitable
forecasting model for the vector of excess returns Zr . Using monthly data
from 1947:1 to 1993:12, we consider three sets of primary assets for our
vector Z~ : (1) a five-asset group, consisting of the S&P 500, a small stock
index, a government bond index, a corporate bond index, and a utilities
index; (2) a 10-asset group consisting of deciles of size-sorted portfolios
constructed from the C1tSP monthly returns file ; and (3) an 11-asset group
of sector-sorted portfolios, also constructed from C1ZSP. The 11 sector port-
folios are defined according to SIC code classifications: (1) wholesale and
retail trade; (2) services; (3) nondurable goods ; (4) construction; (5) capital
goods; (6) durable goods ; (7) finance, real estate, and insurance ; (8) trans-
portation; (9) basic industries ; (10) utilities ; and (11) coal and oil . Within
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each portfolio, the size-sorted portfolios and the sector-sorted portfolios are
value weighted .

9.4. I The Conditional Factors

In developing forecasting models for the three groups of assets, we draw on
the substantial literature documenting the time variation in expected stock
returns to select our conditional factors . From empirical studies by Rozeff
(1984), Chen, Roll, and Ross (1986), Keim and Stambaugh (1986), Breen,
Glosten, and Jagannathan (1989), Ferson (1990), Chen (1991), Estrella
and Hardouvelis (1991), Ferson and Harvey (1991b), Kale, Hakansson, and
Platt (1991) , and many others, variables such as the growth in industrial
production, dividend yield, and default and term spreads on fixed-income
instruments have been shown to have forecast power. Also, the asymmet-
ric lead/lag relations among size-sorted portfolios that Lo and MacKinlay
(1990b) document suggest that lagged returns may have forecast power .
Therefore, we were led to construct the following variables :
DYE Dividend yield, defined as the aggregated dividends for the CRSP value-

weighted index for the 12-month period ending at the end of month t
divided by the index value at the end of month t .

DEFT The default spread, defined as the average weekly yield for low-grade
bonds in month t minus the average weekly yield for long-term govern-
ment bonds (maturity greater than 10 years) in month t . The low grade
bonds are rated Baa.

MATS The maturity spread, defined as the average weekly yield on long-term
government bonds in month t minus the average weekly yield from the
auctions of three-month Treasury bills in month t .

SPR t The S&P 500 Index return, defined as the monthly return on a value-
weighted portfolio of 500 common stocks.

IRT~ The interest-rate trend, defined as the monthly change of the average
weekly yield on long-term government bonds .

SPDYI An interaction term to capture time variation in asset return betas,
defined as the product DY~SPR~ of the dividend yield and the S&P 500
Index return variables .

Of course, there is a possible pre-test bias in our choosing these variables
based on prior empirical studies . For example, Foster et al . (1995) show that
choosing k out ofm regressors (k < m) to maximize R2 can yield seemingly
significant R2 's even when no relation exists between the dependentvariable
and the regressors . They show that such a specification search may explain
the findings of Keim and Stambaugh (1986), Campbell (1987), and Ferson
and Harvey (1991 a) . ~ 3

13 However, using similar conditional factors, Bessembinder and Chan (1992) find similar
levels of predictability for various commodity and currency futures which are nearly un~orre-
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Unfortunately, Foster et al .'s (1995) pre-test bias cannot be corrected
easily in our application, for the simple reason that our selection procedure
does not correspond precisely to choosing the "best" k regressors out of m .
There is no doubt that prior empirical findings have influenced our choice
of conditional factors, but in much subtler ways than this . In particular,
theoretical considerations have also played a part in our choice, both in
which variables to include and which to exclude . For example, even though
a January indicator variable has been shown to have some predictive power,
we have not included it as a conditional factor because we have no strong
theoretical motivation for such a variable .

Because a combination of empirical and theoretical considerations has
influenced our choice of conditional factors, Foster et al .'s (1995) correc-
tions are not directly applicable. Moreover, if we apply their corrections
without actually searching for the best k of m regressors, we will almost
surely never find predictability even if it exists, i .e ., tests for predictabil-
ity will have no power against economically plausible alternative hypotheses
of predictable returns . Therefore, other than alerting readers to the possi-
bility of pre-test biases in our selection of conditional factors, there is little
else that we can do to correct for this ubiquitous problem .

The final specification for the conditional factor model for Zt is then
given by

Ζ~ = α + βιDΥι-ι ~- ß2DEF t_1 + β3ΜΑΤi_ 1 ~- ß4IRT i_ ι

+,BSSPR t_Ι + ß6SPDYε_1 ~- ε~ .

	

(9.4.1)

The interaction term SPDY t_ ι allows the factor loading of the S&P 500 to
vary through time as a linear function of the dividend yield DY~_i . 14

9.4.2 Estimating the Conditional-Factor Model

Tables 9.2-9.4 report ordinary least squares estimates of the conditional-
factor model (9.4 .1) for the three groups of assets, respectively: the (5 x 1)
vector of stocks, bonds, and utilities (SBU) ; the (10 x 1) vector of size deciles
(SIZE) ; and the (11 x 1) vector of sector portfolios (SECTOR) . Panel (a) of

laced with equity returns . This is perhaps the most convincing empirical evidence to date for
the genuine forecast power of dividend yields, short-term interest-rate yields, and the default
~remi~~m .

14 This interaction term is motivated by several recent empirical studies documenting time
variation in asset-return betas, e .g ., Ferson, Kandel, and Stambaugh (1987), Ferson (1989),
Harvey (1989), and Ferson and Harvey (1991b) . In principle, we can model all of the factor
loadings as time-varying . However, the "curse of dimensionality" would arise, as well as the
perils of overfitting . Moreover, the evidence in Ferson and Harvey (1991b, Table 8) suggests
that the predictability in monthly size and sector portfolios is primarily due to changing risk
premia, not changing betas . Therefore, our decision to leave ß~ through ß~ fixed through
time is unlikely to be very restrictive .



Table 9.2. Ordinary least squares regression results for individual asset returns in SBU asset group from 1947 :1

to 1993:12

Regressors°

Asset

	

Constant

	

DY

	

DEF

	

MAT

	

SPR

	

SPDY

	

IRT

	

D.W. b

	

R2

(a) Monthly results
S&P 500

	

-2.27

	

0.70

	

-0.07

	

0.37

	

0.29

	

-0.09

	

-2.82

	

1 .99

	

0. 066

(-2.79)

	

(3.86)

	

(-0.32)

	

(2.66)

	

(1.39)

	

(-1.72)

	

(-2.93)

Small

	

-2.67

	

0.71

	

0.24

	

0.26

	

0.73

	

-0.15

	

-2.52

	

1.89

	

0.055

stocks

	

(-2.35)

	

(2.90)

	

(0.79)

	

(1 .29)

	

(3.24)

	

(-2.66)

	

(-1.80)

Govt

	

-1.08

	

0.16

	

0.15

	

0.31

	

-0.12

	

0.01

	

-0.26

	

1.94

	

0.044
bonds

	

(-2.35)

	

(1.75)

	

(1 .04)

	

(2.71)

	

(-1.07)

	

(0.31)

	

(-0.35)

Corp .

	

-1.28

	

0.19

	

0.22

	

0.32

	

-0.07

	

-0.01

	

-0.79

	

1.80

	

0.068

bonds

	

(-2.85)

	

(2.14)

	

(1.54)

	

(3.02)

	

(-0.72)

	

(-0.22)

	

(-1 .23)
Utilities

	

-2.35

	

0.65

	

0.16

	

0.23

	

0.17

	

-0.05

	

-1.66

	

1.91

	

0.055
(-3.25)

	

(4.22)

	

(0.82)

	

(1.91)

	

(1 .12)

	

(-1.43)

	

(-2.15)

(b) Annual results
S&P 500

	

-35.07

	

12.88

	

-4.34

	

2.68

	

6.04

	

-1.81

	

-28. 18

	

2. 12

	

0.426
(-3.60)

	

(4.35)

	

(-1.72)

	

(1.81)

	

(2.01)

	

(-2.30)

	

(-2.44)
Small

	

-42.12

	

15.91

	

-3.06

	

0.83

	

10.46

	

-3.10

	

-58.59

	

1 .87

	

0.341

stocks

	

(-2.45)

	

(3.92)

	

(-0.84)

	

(0.39)

	

(2.82)

	

(-3.22)

	

(-2.63)
Govt

	

-11.73

	

2.35

	

0.46

	

3.85

	

2.42

	

-0.74

	

1.42

	

2.21

	

0.345

bonds

	

(-1.59)

	

(1.23)

	

(0.28)

	

(4.24)

	

(1 .36)

	

(-1.48)

	

(0.13)
Corp .

	

-15.01

	

2.95

	

1.14

	

4.11

	

2.72

	

-0.83

	

3.53

	

2.15

	

0.425

bonds

	

(-2.03)

	

(1.55)

	

(0.81)

	

(4.89)

	

(1.52)

	

(-1.70)

	

(0.37)

Utilities

	

-38.65

	

12.58

	

-1.33

	

2.07

	

6.42

	

-1.88

	

-16.68

	

1 .84

	

0.397

(-4.36)

	

(5.06)

	

(-0.67)

	

(1 .59)

	

(2.61)

	

(-2.86)

	

(-1.72)

°DY = dividend yield; DEF = default premium ; MAΤ = maturity premium ; SPR = S&P 500 Index total return; SPDY

= SPR x DY; IRT = interest-rate trend . The five assets in the SBU group are the S&P 500 Index, a small stock index,
a government bond index, a corporate bond index, and a utilities index . Heteroskedasticity-consistent z-statistics
are given in parentheses .

b Durbin-Watson test statistic for dependence in the regression residual .



264

	

9. Maximizing Predictability in the Stock and Bond Markets

Table 9.2 contains results for monthly SBU returns and Panel (b) contains
annual results, and similarly for Tables 9 .3 and 9.4 . iá We perform all multi-
horizon return calculations with nonoverlapping returns since Monte Carlo
and asymptotic calculations in Lo and MacKinlay (1989a) and Richardson
and Stock (1990) show that overlapping returns can bias inferences substan-
tially.

The performance of the conditional factors in the regressions of Ta-
bles 9.2-9.4 are larger consistent with findings in the recent empirical lit-
erature . Among the equity assets, the dividend yield is positively related to
future returns and generally significant at the 5% level . The default pre-
mium generally has little incremental explanatory power for future returns .
Additional analysis indicates that its usual explanatory power is captured
by the interest-rate trend variable . The maturity premium has predictive
power mostly for the utilities asset at the annual horizon . In contrast, the
S&P 500 Index return and the interest-rate trend variables are strongest at
the monthly horizon, the former affecting expected returns positively, and
the latter negatively. For the bond assets, most of the forecastability is from
the positive relation with the maturity spread .

From Tables 9 .2-9.4, it is also apparent that the market betas for monthly
equity returns exhibit substantial time variation since the SPDY regressor is
significant at the 5% level for the small stocks in Panel (a) of Table 9 .2, and
for most of the assets in Panel (a) of Tables 9 .3 and 9.4. In these cases, the
estimated coefficient of SPDY is consistently negative, indicating that the
sensitivity of equity assets to the lagged aggregate market return declines as
the dividend yield rises . Note that in each of these cases DY has additional
explanatory power as a separate regressor, as its estimated coefficient is also
significant at conventional levels .

At the annual return-horizon, the market beta and the time variation
in market beta's remains significant for the equity assets . In Panel (b) of
Tables 9 .2, 9.3, and 9 .4, the coefficients for SPR and SPDY are statistically
significant in many of the regressions . Also, DY is still significant, and in
all cases the R 2 is larger for annual returns . In particular, whereas the R 2 's
for monthly asset returns reported in Panel (a) of Tables 9 .2, 9.3, and 9 .4
range from 3 to 9%,the R2 's for annual asset returns range from 16 to 44%
in Panel (b) of Tables 9 .2, 9 .3, and 9 .4 .ßs

Of course, like any other statistic, the R 2 is a point estimate subject

~sWe have also analyzed quarterly and semi-annual returns, but do not report them here
to conserve space. Although the variation in predictability across horizons exhibits some
interesting features, the results generally fall in between the range of monthly and annual
values .

16Note that the longer-horizon returns are nonoverlapping . In some unpublished Monte
Carlo simulations, we have shown that overlapping returns can induce unusually high R2 's

even when the conditional factors are statistically independent of the long-horizon returns .
See also Richardson and Stock (1990) .
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Table 9.3. Ordinary least squares regression results for individual asset returns in the SIZE asset group from 1947:1 ~
to 1993:12

	

Y

Regressors°

Asset Constant

	

DY

	

DEF

	

ΜΑΤ

	

SPR

	

SPDY

	

IRT

	

D.W. b

	

R2

	

R

(α) Monthly results
1

	

-2.90

	

0.74

	

0.43

	

0.17

	

1 .48

	

-0.28

	

-2.69

	

1.90

	

0.082

	

~

(-1 .90)

	

(2.38)

	

(0.95)

	

(0.65)

	

(4.22)

	

(-3.40)

	

(-1.67)

	

~

2

	

-2.74

	

0.71

	

0.29

	

0.20

	

1 .12

	

-0.21

	

-2.69

	

1.90

	

0.073

	

ρ
(-2.03)

	

(2.59)

	

(0.73)

	

(0.93)

	

(4.25)

	

(-3.32)

	

(-1.77)

	

~

3

	

-3.33

	

0.84

	

0.31

	

0.27

	

0.89

	

-0.18

	

-2.61

	

1.92

	

0.064

	

~

(-2.63)

	

(3.22)

	

(0.90)

	

(1 .30)

	

(3.64)

	

(-3.00)

	

(-1.76)
4

	

-3.01

	

0.80

	

0.24

	

0.24

	

0.80

	

-0.16

	

-2.54

	

1.92

	

0.058

(-2.49)

	

(3.22)

	

(0.72)

	

(1 .20)

	

(3.52)

	

(-2.91)

	

(-1.81)

5

	

-3.15

	

0.83

	

0.21

	

0.25

	

0.67

	

-0.14

	

-2.89

	

1.92

	

0.058

(-2.72)

	

(3.46)

	

(0.68)

	

(1 .27)

	

(3.11)

	

(-2 .63)

	

(-2.04)

6

	

-3.16

	

0.85

	

0.20

	

0.29

	

0.69

	

-0.15

	

-3.07

	

1.93

	

0.066

(-2.81)

	

(3.56)

	

(0.67)

	

(1 .53)

	

(3.34)

	

(-2.89)

	

(-2.28)
7

	

-2.83

	

0.78

	

0.17

	

0.30

	

0.58

	

-0.13

	

-3.24

	

1.91

	

0.065
(-2.74)

	

(3.60)

	

(0.64)

	

(1 .70)

	

(2.98)

	

(-2.77)

	

(-2.54)
8

	

-2.89

	

0.77

	

0.17

	

0.34

	

0.51

	

-0.12

	

-3.12

	

1.92

	

0.066
(-2.96)

	

(3.71)

	

(0.67)

	

(2.01)

	

(2.69)

	

(-2.65)

	

(-2.61)
9

	

-2.65

	

0.78

	

0.07

	

0.30

	

0.42

	

-0.11

	

-3.09

	

1.93

	

0.062

(-2.81)

	

(3.85)

	

(0.28)

	

(1 .86)

	

(2.19)

	

(-2.35)

	

(-2.76)

10

	

-2.15

	

0.66

	

-0.09

	

0.37

	

0.28

	

-0.08

	

-2.68

	

1.99

	

0.063

(-2.67)

	

(3.72)

	

(-0.44)

	

(2.67)

	

(1.34)

	

(-1 .67)

	

(-2.79)

	

~
σι

(conrinued)

	

~



t.~
Τable 93. (continued)

	

~

Regressors"

Asset Constant

	

DY

	

DEF

	

MAT

	

SPR

	

SPDY

	

IRT

	

D .W. b RL

(6) Αηηυα~ results
1

	

-41.45

	

18.20

	

-4.67

	

0.16

	

14.35

	

-4.21

	

-83.15

	

1 .54

	

0.231

(-1.33)

	

(3.01)

	

(-0.97)

	

(0.04)

	

(2.62)

	

(-3.03)

	

(-2.43)
2

	

-40.67

	

16.77

	

-4.37

	

0.61

	

11 .81

	

-3.55

	

-68.83

	

1 .65

	

0.251

	

~
(-1.61)

	

(3.14)

	

(-1 .04)

	

(0.20)

	

(2.64)

	

(-3.18)

	

(-2.35)

3

	

-48.33

	

17.66

	

-2.50

	

0.39

	

10.19

	

-3.11

	

-66.77

	

1 .75

	

0.320

	

Q

(-2.28)

	

(3.79)

	

(-0.67)

	

(0.15)

	

(2.56)

	

(-3.10)

	

(-2.47)

	

~

4

	

-46.98

	

17.63

	

-3.53

	

0.85

	

10.33

	

-3.18

	

-59.48

	

1 .80

	

0.332

	

~

(-2.40)

	

(4.02)

	

(-0.96)

	

(0.34)

	

(2.73)

	

(-3.35)

	

(-2.66)

	

~

5

	

-48.08

	

17.32

	

-3.68

	

1 .33

	

9.84

	

-3.00

	

-48.49

	

1 .77

	

0.328

	

b

(-2.68)

	

(4.04)

	

(-1 .05)

	

(0.56)

	

(2.71)

	

(-3.28)

	

(-2.24)

	

~

6

	

-46.88

	

16.72

	

-3.05

	

1 .32

	

9.45

	

-2.81

	

-51.08

	

1 .91

	

0.369

	

Q,

(-2.92)

	

(4.27)

	

(-0.96)

	

(0.59)

	

(2.70)

	

(-3.13)

	

(-2.64)

	

_̂~
7

	

-44.42

	

16.04

	

-3.21

	

1 .80

	

9.26

	

-2.77

	

-48.10

	

2.04

	

0.402

	

` 2

(-3.06)

	

(4.38)

	

(-1.06)

	

(0.97)

	

(3.01)

	

(-3.45)

	

(-2.79)

	

~

8

	

-44.36

	

15.64

	

-3.28

	

2.08

	

9.06

	

-2.73

	

-44.68

	

1 .94

	

0.442

	

~

(-3.40)

	

(4.48)

	

(-1.14)

	

(1 .18)

	

(3.08)

	

(-3.44)

	

(-3.17)

	

ó
9

	

-36.50

	

13.75

	

-3.75

	

1 .60

	

6.84

	

-2.07

	

-41.69

	

2.09

	

0.442

	

~

(-3.23)

	

(4.52)

	

(-1.50)

	

(1 .02)

	

(2.54)

	

(-2.90)

	

(-3.29)

10

	

-33.18

	

12.08

	

-4.37

	

2.69

	

5.96

	

-1 .75

	

-25.56

	

2.10

	

0.411

	

~

(-3.48)

	

(4.20)

	

(- 1.79)

	

(1 .75)

	

(1.96)

	

(-2.24)

	

(-2.22)

	

~
~y

aDY = dividend yield ; DEF = default premium ; MAΤ = maturity premium ; SPR = S&P 500 Index total return ; SPDY =
SPR x DY; IRT = interest-rate trend . The 10 SIZE assets are portfolios of stocks grouped according to their market

	

R
value of equity. Heteroskedasticity-consistent z-statistics are gives in parentheses .

	

cps

bDurbin-Watson test statistic for dependence in the regression residual .

	

`'
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Table 9.3. (continued)

	

~~~

Regressors"

Asset Constant

	

DY

	

DEF

	

MAΤ

	

SPR

	

SPDY

	

IRT

	

D.W. b R2

(b) Αηηυα1 results
1

	

-41.45

	

18.20

	

-4.67

	

0.16

	

14.35

	

-4.21

	

-83.15

	

1.54

	

0.231

(-1.33)

	

(3.01)

	

(-0.97)

	

(0.04)

	

(2.62)

	

(-3.03)

	

(-2.43)

2

	

-40.67

	

16.77

	

-4.37

	

0.61

	

11 .81

	

-3.55

	

-68.83

	

1.65

	

0.251

	

~

(-1.61)

	

(3.14)

	

(-1 .04)

	

(0.20)

	

(2.64)

	

(-3.18)

	

(-2.35)

3

	

-48.33

	

17.66

	

-2.50

	

0.39

	

10.19

	

-3.11

	

-66.77

	

1 .75

	

0.320

	

ρ

(-2.28)

	

(3.79)

	

(-0.67)

	

(0.15)

	

(2.56)

	

(-3.10)

	

(-2.47)

	

~~

4

	

-46.98

	

17.63

	

-3.53

	

0.85

	

10.33

	

-3.18

	

-59.48

	

1 .80

	

0.332

(-2.40)

	

(4.02)

	

(-0.96)

	

(0.34)

	

(2.73)

	

(-3.35)

	

(-2.66)

	

α4

5

	

-48.08

	

17.32

	

-3.68

	

1 .33

	

9.84

	

-3.00

	

-48.49

	

1 .77

	

0.328

	

b
~ο

(-2.68)

	

(4.04)

	

(-1 .05)

	

(0.56)

	

(2.7η

	

(-3.28)

	

(-2.24)

	

~~'

6

	

-46.88

	

16.72

	

-3.05

	

1 .32

	

9.45

	

-2.81

	

-51.08

	

1 .91

	

0.369

	

~,

(-2.92)

	

(4.27)

	

(-0.96)

	

(0.59)

	

(2.70)

	

(-3.13)

	

(-2.64)

	

~_
7

	

-44.42

	

16.04

	

-3.21

	

1 .80

	

9.26

	

-2.77

	

-48.10

	

2.04

	

0.402

	

`~

(-3.06)

	

(4.38)

	

(-1.06)

	

(0.97)

	

(3.01)

	

(-3.45)

	

(-2.79)

	

~

8

	

-44.36

	

15.64

	

-3.28

	

2.08

	

9.06

	

-2.73

	

-44.68

	

1 .94

	

0.442

	

~

(-3.40)

	

(4.48)

	

(-1.14)

	

(1 .18)

	

(3.08)

	

(-3.44)

	

(-3.17)

	

ó
9

	

-36.50

	

13.75

	

-3.75

	

1 .60

	

6.84

	

-2.07

	

-41.69

	

2.09

	

0.442

	

~

(-3.23)

	

(4.52)

	

(-1.50)

	

(1 .02)

	

(2.54)

	

(-2.90)

	

(-3.29)

10

	

-33.18

	

12.08

	

-4.37

	

2.69

	

5.96

	

-1.75

	

-25.56

	

2.10

	

0.411

	

~

(-3.48)

	

(4.20)

	

(-1.79)

	

(1 .75)

	

(1 .96)

	

(-2.24)

	

(-2.22 )

	

~

~DY = dividend yield; DEF - default premium ; MAΤ = maturity premium ; SPR = S&P 500 Index total return ; SPDY =
SPR x DY; IRT = interest-rate trend . The 10 SIZE assets are portfolios of stocks grouped according to their market
value of equity. Heteroskedasticity-consistent z-statistics are given in parentheses .

	

Fop

bDurbin-Watson test statistic for dependence in the regression residual .



Table 9.4. Ordinary least squares regression results for individual asset returns in the SÉCTOR asset group from 1947 :1 to
1993:12 a

Regressors~

	

~
~~-

Asset Constant

	

DY

	

DEF

	

MAΤ

	

SPR

	

SPDY

	

IRT

	

D.W. b R2

	

~.
Q

(a) Monthly results

	

ti
Trade

	

-3.46

	

0.74

	

0.52

	

0.35

	

0.80

	

-0.16

	

-2.84

	

1 .82

	

0.077
(-3.05)

	

(3 .23)

	

(1.64)

	

(1 .73)

	

(3.59)

	

(-2.93)

	

(-2.08)

	

~
Services

	

-3.27

	

0.80

	

0.39

	

0.30

	

0.88

	

-0.17

	

-2.52

	

1 .84

	

0.064

	

~
(-2.56)

	

(3.09)

	

(1.12)

	

(1 .41)

	

(3.68)

	

(-2.96)

	

(-1.80)

	

Q

Nondurables

	

-3.17

	

0.72

	

0.45

	

0.29

	

0.82

	

-0.17

	

-2.60

	

1 .88

	

0.080

	

~
(-3.16)

	

(3.41)

	

(1.58)

	

(1 .69)

	

(4.12)

	

(-3.42)

	

(2.14)
Constructίon

	

-3.77

	

0.95

	

0.28

	

0.22

	

0.99

	

-0.20

	

-4.69

	

1 .89

	

0.092
(-3.08)

	

(3.84)

	

(0.82)

	

(1 .02)

	

(3.75)

	

(-3.21)

	

(-3.10)
Capital goods

	

-2.96

	

0.80

	

0.16

	

0.23

	

0.87

	

-0.18

	

-2.78

	

1 .87

	

0.061
(-2.48)

	

(3.20)

	

(0.50)

	

(1 .14)

	

(3.77)

	

(-3.17)

	

(-1 .94)
Durables

	

-3.44

	

0.88

	

0.25

	

0.35

	

0.89

	

-0.18

	

-2.61

	

1 .88

	

0.060
(-2.63)

	

(3.29)

	

(0.73)

	

(1 .64)

	

(3.56)

	

(-3.04)

	

(-1 .76)
Fin, RE, Ins

	

-4.20

	

1.03

	

0.27

	

0.29

	

0.80

	

-0.16

	

-3.52

	

1 .89

	

0.083
(-3.43)

	

(4.30)

	

(0.77)

	

(1 .46)

	

(3.28)

	

(-2.79)

	

(-2.63)
Transportation

	

-3.21

	

0.87

	

0.13

	

0.29

	

0.81

	

-0.17

	

-3.47

	

1 .87

	

0.058
(-2.57)

	

(3.10)

	

(0.39)

	

(1 .41)

	

(3.07)

	

(-2.60)

	

(-2.27)
Basic industries

	

-2.21

	

0.71

	

0.02

	

0.16

	

0.61

	

-0.13

	

-3.26

	

1 .96

	

0.055
(-2.05)

	

(2 .99)

	

(0.09)

	

(0.87)

	

(2.88)

	

(-2.46)

	

(-2.38)
Utilities

	

-2.35

	

0.65

	

0.16

	

0.23

	

0.17

	

-0.05

	

-1.66

	

1 .91

	

0.055
(-3.25)

	

(4.22)

	

(0.82)

	

(1.91)

	

(1.12)

	

(-1.43)

	

(-2.15)
Oil and coal

	

-1.25

	

0.73

	

-0.30

	

-0.17

	

0.67

	

-0.16

	

-3.12

	

1 .90

	

0.034

	

~
(-0.99)

	

(2 .62)

	

(-0.92)

	

(-0.76)

	

(2.58)

	

(-2.38)

	

(-1 .64)

	

~

(con~nued)
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Table 9. 4 . (continued)

	

~
Regressors~

Asset Constant

	

DY

	

DEF

	

MAΤ

	

SPR

	

SPDY

	

IRT

	

D.W. h R2

(b) Annual results
Trade

	

-57.42

	

18.09

	

0.34

	

1 .95

	

12.86

	

-3.76

	

-51.01

	

1.62

	

0.324
(-2.58)

	

(3.68)

	

(0.09)

	

(0.73)

	

(3.20)

	

(-3.70)

	

(-2.18)

Services

	

-46.16

	

18.66

	

-3.87

	

0.09

	

12.92

	

-4.04

	

-74.54

	

1.69

	

0.335

(-1 .93)

	

(3.62)

	

(-0.99)

	

(0.03)

	

(3.31)

	

(-4.22)

	

(-2.85)

	

~

Nondurables -49.54

	

16.39

	

-0.31

	

0.77

	

10.97

	

-3.25

	

-57.55

	

1.92

	

0.383

(-2.86)

	

(4.13)

	

(-0.09)

	

(0.35)

	

(3.37)

	

(-3.89)

	

(-3.24)

	

x
Construction

	

-50.70

	

17.23

	

-2.52

	

1 .75

	

9.11

	

-2.81

	

-57.43

	

1 .83

	

0.345

	

~
(-2.71)

	

(3.81)

	

(-0.67)

	

(0.69)

	

(2.52)

	

(-3.08)

	

(-3 .10)

	

~

Capital goods -42.81

	

16.11

	

-3.73

	

0.17

	

9.20

	

-2.75

	

-58.77

	

1 .89

	

0.291

	

~

(-2.13)

	

(3.46)

	

(-0.93)

	

(0.06)

	

(2.24)

	

(-2.63)

	

(-2.51)

Durables -56.88

	

20.22

	

-3.55

	

0.67

	

13.29

	

-3.89

	

-63.26

	

1 .83

	

0.345

	

~

(-2.59)

	

(4.32)

	

(-0.83)

	

(0.26)

	

(3.23)

	

(-3.70)

	

(-2.61)

	

ó„

Fin, RE, Ins -57.06

	

18.49

	

-2.67

	

1.21

	

11 .57

	

-3.21

	

-44.28

	

1 .47

	

0.298

	

^_~
(-2.85)

	

(4.28)

	

(-0.87)

	

(0.51)

	

(3.49)

	

(-4.02)

	

(-2.10)

	

`2
Transportation -46.13

	

16.48

	

-3.53

	

2.19

	

7.57

	

-2.39

	

-63.51

	

1 .90

	

0.324

	

~
(-2.56)

	

(3.49)

	

(-0.73)

	

(0.97)

	

(1.42)

	

(-1 .64)

	

(-3.22)

	

~

Basic industries -37.67

	

15.16

	

-5.06

	

1 .02

	

7.66

	

-2.37

	

-48.11

	

2.09

	

0.342

	

~ó
(-2.57)

	

(3.71)

	

(-1.45)

	

(0.52)

	

(1.97)

	

(-2.22)

	

(-2.82)

	

~

Utilities

	

-38.65

	

12.58

	

-1.33

	

2 .07

	

6.42

	

-1 .88

	

-16.68

	

1 .84

	

0.397

	

~

(-4.36)

	

(5.06)

	

(-0.67)

	

(1 .59)

	

(2.61)

	

(-2.86)

	

(-1 .72)

	

~

Oil and coal -24.66

	

13.32

	

-7.56

	

-3.75

	

7.93

	

-1.91

	

-26.39

	

1 .90

	

0.164

	

°

(-1.05)

	

(1.99)

	

(-1.63)

	

(-0.94)

	

( 1.32)

	

( - 1.24)

	

(-0.82)

	

~

°DY - dividend yield; DEF = default premium ; MAΤ = maturity premium ; SPR = S&P 500 Index total return ; SPDY =
SPR x DY; IRT = interest-rate trend . The eleven SECTOR assets are portfolios of stocks grouped according to their

	

~
SIC codes . Heteroskedasticity-consistent z-statistics are given in parentheses .

b Durbin-Watson test statistic for dependence in the regression residual .
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to sampling variation . Since longer-horizon returns - yield fewer nonover-
lapping observations, we might expect the R 2 's from such regressions to
exhibit larger fluctuations, with more extreme values than regressions for
monthly data. We shall deal explicitly with the sampling theory of the R 2 in

Section 9.5 .

9.4.3 Maximizing Predictability

Given the estimated conditional-factor models in Tables 9 .2-9.4, we can
readily construct the (sample or estimated) MPP's . Given the estimate B

~0 1 ~~, the estimated MPP y* is simply the eigenvector corresponding to

the largest eigenvalue of B.
We will also have occasion to consider the constrained MPPy~ , con-

strained to have nonnegative portfolio weights . It will become apparent
below that an unconstrained maximization of predictability yields consid-
erably more extreme and unstable portfolio weights than a constrained
maximization . Moreover, for many investors, the constrained case may be
of more practical relevance . Although we do not have a closed-form expres-
sion for ~~ , it is a simple matter to calculate it numerically. Again, given B,
we may obtain y~ in a similar manner.

In Table 9.5, we report the conditional-factor model of the ΜΡΡ for the
SBU, SIZE, and SECTOR portfolios, constrained and unconstrained, for
monthly and annual return-horizons using the factors of Section 9 .4.1 . In
Panel (a) of Table 9 .5, the patterns of the estimated coefficients are largely
consistent with those of Table 9 .2: The coefficient of the interaction variable
SPDY is negative, though insignificant for monthly returns ; the coefficient
of dividend yield DY is positive and significant for all portfolios ; and the
maximal R 2 increases with the horizon .

As expected, the maximal R2 's are larger than the largest R 2's of the
individual portfolio regressions. For example, the monthly constrained
maximal R 2 is 9%, and the S&P 500 regression in Panel (a) of Table 9 .2
has an R2 of 7%. There is somewhat more improvement at an annual
horizon. For example, the unconstrained maximal R2 is 50% at an annual
horizon, whereas the R2 's for the annual returns of the five individual assets
in Panel (b) range from 34 to 43% .

Panels (a) and (b) of Table 9 .5 exhibit similar findings for the SIZE
and SECTOR assets. The R2 's of monthly size portfolios range from 6 to
8% in Panel (a) of Table 9.3, whereas Panel (b) of Table 9 .5 reports the
unconstrained maximal R2 to be 12%, and the constrained to be 8% . But at
an annual horizon, the R 2's for individual size portfolios range from 23 to
44%, while the maximal constrained and unconstrained R 2 's from Table 9.5
are 45 and 61%, respectively.



Table 9.5. Conditional expected return of MPΡ for the three asset groups from 1947 :1 to 1993 :12

Regressors"

Asset Constant

	

DY

	

DEF

	

MAΤ

	

SPR

	

SPDY

	

IRT

	

D.W. b R 2

(a) SBU
Monthly

	

-1 .50

	

0.35

	

0.05

	

0.38

	

-0.11

	

-0.01

	

-1.76

	

1.85

	

0.106
unconstrained

	

(-2.78)

	

(3.01)

	

(0.29)

	

(3.83)

	

(-0.72)

	

(-0.36)

	

(-2.87)
Monthly

	

-1 .61

	

0.36

	

0.12

	

0.34

	

0.05

	

-0.03

	

-1.48

	

1.89

	

0.086
constrained

	

(-3.43)

	

(3.64)

	

(0.86)

	

(3.59)

	

(0.50)

	

(-1.19)

	

(-2.41)
Anηυαl

	

-22.05

	

6.53

	

-0.58

	

3.34

	

4.36

	

-1.31

	

-11.27

	

2.06

	

0.497
unconstrained

	

(-3.91)

	

(4.28)

	

(-0.48)

	

(4.09)

	

(2.89)

	

(-3.34)

	

(-1.70)
Anηυαl

	

-22.05

	

6.53

	

-0.58

	

3.34

	

4.36

	

-1.31

	

-11.27

	

2.06

	

0.497
constrained

	

(-3.91)

	

(4.28)

	

(-0.48)

	

(4.09)

	

(2.89)

	

(-3.34)

	

(-1.70)
(b) SIZE

Unconstrained

	

-0.08

	

0.70

	

2.58

	

-0.03

	

9.47

	

-1 .60

	

-6.24

	

1.96

	

0.116
monthly

	

(-0.01)

	

(-0.41)

	

(1 .09)

	

(-0.02)

	

(4.06)

	

(-3.06)

	

(-0.90)
Constrained

	

-2.90

	

0.74

	

0.43

	

0.17

	

1.48

	

-028

	

-2.69

	

1.90

	

0.082
monthly

	

(-1.90)

	

(2.38)

	

(0.95)

	

(0.65)

	

(4.22)

	

(-3.40)

	

(-1.67)
Unconstrained

	

-112.73

	

30.08

	

10.83

	

1 .45

	

17.91

	

-5.23

	

122.31

	

1 .46

	

0.615
annual

	

(-4.78)

	

(5.02)

	

(1 .95)

	

(0.49)

	

(3.03)

	

(-3.29)

	

(-3.79)
Constrained

	

-39.68

	

14.40

	

-3.62

	

1 .96

	

7.75

	

-2.33

	

-40.94

	

2.04

	

0.445
annual

	

(-3.41)

	

(4.54)

	

(-1 .38)

	

(1 .21)

	

(2.78)

	

(-3.13)

	

(-3.21)
(c) SEGTOR

Unconstrained

	

-6.73

	

1.15

	

1 .27

	

0.41

	

1.92

	

-0.37

	

-7.18

	

1 .72

	

0.120
monthly

	

(-3.50)

	

(3.03)

	

(2.14)

	

(1 .20)

	

(4.20)

	

(-3.37)

	

(-3.37)
Constrained

	

-3.87

	

0.97

	

0.28

	

0.23

	

0.95

	

-0.20

	

-4.42

	

1 .89

	

0.093
monthly

	

( 3.21)

	

(4.01)

	

(0.82)

	

(1 .13)

	

(3.73)

	

(-3.19)

	

(-3.03)
Unconstrained

	

-50.00

	

18.82

	

-4.59

	

1.74

	

11.47

	

-3.51

	

-46.54

	

1 .87

	

0.525
annual

	

(-4.02)

	

(6.06)

	

(-1 .59)

	

(1.18)

	

(3.80)

	

(-4.42)

	

(-3.99)
Constrained

	

40.68

	

13.99

	

-2.33

	

1.76

	

7.35

	

-2.18

	

-29.44

	

1 .87

	

0.455
annual

	

(-4.31)

	

(5.55)

	

(-1 .04)

	

(1.25)

	

(3.19)

	

(-3.62)

	

(-3.14)

°DY = dividend field; DEF = default premium ; MAΤ = maturity premium; SPR = S&P 500 Index total return ; SPDY = SPR
x DY; IRT = interest-rate trend . The asset groups are SBU, SIZE, and SECTOR . Heteroskedasticity-consistent z-statistics are
given in parentheses .

b Durbin-Watson test statistic for dependence in the regression residual .
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Table 9.5 also shows that the importance of the - shortsales constraint
for maximizing predictability depends critically on the particular set of as-
sets over which predictability is being maximized . It is apparent that the
shortsales constraint has little effect on the levels of the maximal R2 for the

five SBU assets . Indeed, the constraint is not binding for annual returns .
However, this is not the case for either the 10 SIZE assets or the 11 SECTOR
assets. When the shortsales constraint is imposed, maximal R2 's drop dra-
matically, from 62 to 45% for annual SIZE assets and from 53 to 46% for

annual SECTOR assets .

9.4.4 The Maximally Predictable Portfolios

Whereas the coefficients of the regressions in Table 9.5 measure the sensi-
tivity of the MPP to various factors, it is the portfolio weights of the MPPs
that tell us which assets are the most important sources of predictability .

Table 9.6 reports these portfolio weights for the three sets of assets, SBU,
SIZE, and SECTOR .

Perhaps the most striking feature of Table 9.6 is how these portfolio
weights change with the horizon . For example, the unconstrained max-
imally predictable SIZE portfolio has an extreme long position in decile
2 for monthly returns but an extreme short position for annual returns .
The maximally predictable SECTOR and SBU portfolios exhibit similar
patterns across the two horizons, but the weights are much less extreme .
These changing weights are consistent with a changing covariance struc-
ture among the assets over horizons ; as the structure changes, so must the
portfolio weights to maximize predictability .

When the shortsales constraint is imposed, the portfolio weights vary less
extremely-by construction, of course, since they are bounded between 0
and 1-but they still shift with the return horizon . For example, the con-
strained maximally predictable SBU portfolio is split between the S&P 500
and corporate bonds for monthly returns, but contains all assets. for annual
returns. More interestingly, the constrained maximally predictable SIZE
portfolio is invested in decile 1 for monthly returns, but is concentrated in
deciles 8, 9, and 10 for annual returns .

That the larger capitalization stocks should play so central a role in
maximizing predictability among SIZE assets is quite unexpected, since it
is the smaller stocks that are generally more highly autocorrelated. How-

ever, as the example in Section 9.3.2 illustrates, it is important to distinguish
between the factors that predict returns and the assets that are most pre-
dictable. In the case of the SIZE assets, one explanation might be that over
longer horizons, factors such as industrial production and dividend yield
become more important for the larger companies since they track general
business trends more closely than smaller companies (see Table 9.3) .
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Table 9.6. Portfolio z~eights of MPΡ for three asset groups from 1947 :1 to 1993:12

Monthly

	

Monthly

	

Annual

	

Annual
Asset

	

unconstrained constrained unconstrained constrained

(a) SBU
S&P 500

	

0.69

	

0.34

	

0.19

	

0.19
Small stocks

	

-0.38

	

0.00

	

0.13

	

0.13
Govt bonds

	

-0.48

	

0.00

	

0.18

	

0.18
Corp. bonds

	

1 .19

	

0.66

	

0.49

	

0.49
Utilities

	

-0.02

	

0.00

	

0.01

	

0.01

(b) SIZE
Decile 1

	

4.97

	

1 .00

	

1.10

	

0.00
Decile 2

	

11.18

	

0.00

	

-4.68

	

0.00
Decile 3

	

-4.11

	

0.00

	

4.57

	

0.00
Decile 4

	

-7.13

	

0.00

	

-0.67

	

0.00
Decile 5

	

-13.97

	

0.00

	

-5.25

	

0.00
Decile 6

	

8.97

	

0.00

	

2.55

	

0.00
Decile 7

	

5.54

	

0.00

	

2.09

	

0.00
Decile 8

	

7.50

	

0.00

	

6.79

	

0.46
Decile 9

	

-12.01

	

0.00

	

-3.18

	

0.41
Decile 10

	

0.06

	

0.00

	

-2.32

	

0.13
(c) SECTOR

Trade

	

0.36

	

0.00

	

-0.70

	

0.00
Services

	

-0.13

	

0.00

	

0.49

	

0.00
Nondurables

	

2.15

	

0.00

	

0.27

	

0.00
Construction

	

1 .93

	

0.77

	

0.19

	

0.00
Capital goods

	

-0.16

	

0.00

	

-1.70

	

0.00
Durables

	

-1.38

	

0.00

	

1 .26

	

0.09
Fin, RE, Ins

	

0.32

	

0.23

	

-0.01

	

0.01
Transportation

	

0.22

	

0.00

	

0.01

	

0.06
Basic industries

	

-1.12

	

0.00

	

0.62

	

0.18
Utilities

	

-0.95

	

0.00

	

0.59

	

0.67
Oil and coal

	

-0.24

	

0.00

	

-0.03

	

0.00

Further insights concerning the sources of predictability are contained
in the SECTOR portfolio weights . The constrained MPP for monthly SEC-
TORreturns is invested in two assets : construction; and finance, real estate,
and insurance . However, at an annual horizon, the composition of this
portfolio changes dramatically, consisting mostly of two completely differ-
ent assets: basic industries and utilities . This indicates that the sources of
time variation in expected returns are sensitive to the return horizon . The
sectors that are important for maximizing predictability for monthly returns
may be quite different from those that maximize predictability for returns
over longer horizons .
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9.5 Statistical Inference for the Maximal R 2

Although the magnitudes of the sample R2 's of Section 9 .4 suggest the pres-
ence of genuine predictability in stock returns, we must still consider data-
snooping biases imparted by our in-sample maximization procedure. It is a
well-known fact that the maximum of a collection of identically distributed
random variables does not have the same distribution as the individual max-
imands. However, it is not always an easy task to deduce the distribution of
the maximum, especially when the individual variables are not statistically in-
dependent as in our current application . Moreover, maximizing the R 2 over
a continuum of portfolio weights cannot be easily recast into the maximum
of a discrete set of random variables . Therefore, much of our inferences
must be guided by Monte Carlo simula~on experiments in which the sam-
pling distribution of R 2 and related statistics are tabulated by generating
pseudo-random data under the null hypothesis of no predictability . 17

9.5.1 Monte Carlo Analysis

In particular, for the monthly return horizon, we simulate 564 observations
of independently and identically distributed Gaussian stock returns, calcu-
late the R2 corresponding to the MPP of q-period returns using the condi-
tional factors of Section 9 .4.2, record this R 2 , and repeat the same procedure
9,999 times, yielding 10,000 replications . For the annual horizon, we per-
form similar experiments: we simulate 10,000 independent samples at the
annual horizon (a sample size of 47 observations), and record the maximum
R2 for each sample .

The simulations yield the finite-sample distribution for the maximal R 2
under the null hypothesis of no predictability. The features of that distribu-
tion are reported for various values of q in Panel (a) of Table 9 .7 for the
unconstrained ΜΡΡ, and in Panel (b) for the constrained ΜΡΡ . The rows
with q = 1 correspond to a monthly return horizon and those with q = 12
correspond to an annual horizon . Within each panel, simulation results are
reported for asset vectors with 5, 10, and 11 elements, corresponding to the
number of SBU, SIZE, and SECTOR assets, respectively.

Table 9.7 shows that when predictability is maximized by combining
assets into portfolios, spuriously large R 2 's may be obtained . With a monthly
horizon and 564 observations, the problem is not severe . For example, when
q = 1 and N = 11, the mean maximal R2 is 4.3%, a relatively small value .
However, at an annual horizon, the problem becomes more serious . With 11

t7 We do have some analytical results for this problem, but they rely heavily on the assumption
that returns are multivariate normal . Moreover, the exact sampling distribution of R 2 is given
by the sum of zonal polynomials which is computationally tractable only for very simple special
cases. See Lo and MacKinlay (1992) for further details .



Table 9.7. Simulated finite-sample distribution of maximum R2 of MPP ~f N assets under null hypothesis of no
predictability, using six variables as predictors°

q

	

Mean S.D . Min Max

	

1%

	

5%

	

10% 50% 90% 95%

	

99%

(a) Unconstrained portfolio weights
N=5

1

	

0.027 0.008 0.007 0.071 0.012 0.016 0.018 0.026 0.038 0.042

	

0.050
12

	

0.317 0.078 0.084 0.669 0.164 0.199 0.221

	

0.312 0.422 0.452

	

0.517
N=10

1

	

0.043 0.010 0.017 0.095 0.024 0.028 0.031 0.042 0.055 0.060

	

0.069
12

	

0.473 0.077 0.232 0.758 0.308 0.350 0.374 0.470 0.573 0.606

	

0.664
N = 11

1

	

0.045 0.010 0.020 0.109 0.026 0.031 0.033 0.044 0.058 0.063

	

0.073
12

	

0.500 0.075 0.241 0.769 0.332 0.378 0.404 0.498 0.598 0.629

	

0.681
(b) Constrained portfolio weights

N=5
1

	

0.023 0.007 0.005 0.069 0.010 0.013 0.014 0.022 0.033 0.037

	

0.044
12

	

0.269 0.075 0.068 0.606 0.124 0.157 0.177 0.262 0.369 0.402

	

0.472
N = 10

1

	

0.033 0.009 0.013 0.080 0.017 0.021 0.023 0.032 0.044 0.048

	

0.057
12

	

0.373 0.079 0.151 0.697 0.124 0.254 0.276 0.368 0.477 0.514

	

0.577
N = 11

1

	

0.035 0.009 0.014 0.082 0.019 0.022 0.025 0.034 0.047 0.051

	

0.060
12

	

0.391

	

0.079 0.132 0.751 0.230 0.269 0.292 0.386 0.495 0.529

	

0.591

°For each panel, the simulation consists of 10,000 independent replications of 564 independenil~ and identically
distributed Gaussian observations for the monthly horizon (q = 1) and 47 observations for the annual horizon
(4

	

12) .
bShortsales constrained case with nonnegative weights .
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Table 9.8. Finite-sample distribution of R2 of a gwen portfolio under null hypothesis of no
predictability, using six variables as predictors

4 1%

	

5%

	

10%

	

50%

	

90%

	

95%

	

99%

1

	

0.002

	

0.003

	

0.004

	

0.010

	

0.019

	

0.022

	

0.030
12

	

0.021

	

0.038

	

0.051

	

0.120

	

0.224

	

0.259

	

0.330

Distribution is tabulated for 564 independend~ and identically distributed Gaussian observa-
tions for the monthly horizon (q = 1) and for 47 observations for the annual horizon (q = 12) .

assets, the maximal R2 distribution for the unconstrained case has a mean of
50.0% and a 95% critical value of 62 .9% for annual returns. Similar results
hold for the constrained case-longer-horizon nonoverlapping returns can
yield large R2 's even when there is no predictability.

The effects of data snooping under the null hypothesis can be further
quantified by comparing Table 9 .7 with Table 9 .8, in which the percentiles
of the finite-sample distribution of the R2 for an arbitrary individual asset
is reported, also under the null hypothesis of no predictability. For g = 1
the differences between the distributions in Table 9.7 and the distributions
in Table 9.8 are small-for example, the 95% critical value of an individual
asset's R2 is 2.2%, whereas the corresponding critical value for the uncon-
strained MPP's R2 are 3.8%, 5.5%,and 5 .7% for 5, 10, and 11 assets, respec-
lively. But again, the effects of data snooping become more pronounced
at longer horizons. Using annual returns with 10 assets, the distribution of
the unconstrained maximal R2 has a 95% critical value of 60 .6%, whereas
Table 9.8 shows that without this maximization, the 95% critical value for
the R2 is only 25.9% . These results emphasize the need to interpret portfo-
lio R 2's with caution, particularly when the construction of the portfolios is
determined by the data (see also Lo and MacKinlay, 1990a) .

The statistical significance of the empirical results of Section 9 .4 can now
be assessed by relating the maximum sample R2's in Table 9 .5 to the empiri-
cal null distributions in Table 9 .7. The result of such an exercise is clear : The
statistical significance of predictability decreases as the observation horizon
increases . For the monthly horizon the sample R2 's are substantially higher
than the 95% critical values, whereas at the annual horizon they are not .

Of course, this finding need not imply the absence of predictability over
longer horizons, but may simply be due to the lack of power in detecting
predictability via the maximal R2 for long-horizon returns . After all, since

' we are using nonoverlapping returns, our sample size for the annual return
horizon is only 47 observations, and given the variability of equity returns,
it is not surprising that there is little evidence of predictability in annual
data .
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9.6 Three Out-of-Sample Measures of Predictability

Despite the statistical significance of predictability at monthly, semi-annual,
and annual horizons, we are still left with the problem of estimating genuine
predictability: that portion of the maximal R2 not due to deliberate data
snooping. Although it is virtually impossible to provide such a decomposi-
tion without placing strong restrictions on the return- and data-generating
processes (see, for example, Lo and MacK~nlay, 1990a; Foster et al ., 1995),
an alternative is to measure the out-of-sample predictability of our MPP .
Under the null hypothesis of no predictability, our maximization procedure
should not impart any statistical biases out-of-sample, but if there is genuine
predictability in the ΜΡΡ, it should be apparent in out-of-sample forecasts .

We consider three out-of-sample measures of predictability . First, in a re-
gression framework we examine the relation between the forecast error of a
naive constant-expected-excess-return model-an unconditional forecast-
and a conditional forecast minus the naive forecast, where the conditional
forecast is conditioned on the factors of Section 9.4 .1 . If excess returns are
unpredictable, these quantities should be uncorrelated . Second, we em-
ploy Merton's (1981) test of market timing to measure how predictable the
ΜΡΡ is in the context of a simple asset allocation rule . Third, we present
an illustrative profitability calculation for this simple asset allocation rule to
gauge the economic significance of the MPP's predictability .

These three measures yield the same conclusion : Recent U .S. stock
returns contain genuine predictability that is both statistically and econom-
ically significant .

9.6.1 Naive vs . Conditional Forecasts

Denote by Z~ the excess return for the ΜΡΡ in month t (in excess of the
one-month risk-free rate) :

Z~ = Ý *~R~ - Rft,

	

(9.6.1)

where R~ is the vector of primary asset returns, y* is the estimated ΜΡΡ
weights, and Rf~ is the one-month Treasury bill rate . A naive one-step-ahead
forecast of Z~ is the weighted average of the (time series) mean excess return
for the past returns of each of the primary assets, an unconditional forecast of
Z~ which we denote by Z~ . Now denote b~ Zb the conditional one-step-ahead
forecast of Zi , conditioned on the economic variables of Section 9 .4 .1,

Ζδ = Ύ*~(Ζι + μ) - Rjι> (9.6.2)

where we have added back the estimated mean vector ~, of the primary assets
since Zt is the conditional forecast of de-meaned returns .
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•

	

compare the incremental value of the conditional forecast Zb beyond

the naive forecast Zi , we estimate the following regression equation :

Z~ - Zt = ßo + ß~(Zb - Z~) + ~~ .

	

(9.6.3)

If Zb has no forecast power beyond the naive forecast Z~ , then the estimated

coefficient ßl should not be statistically different from zero .
• estimate (9.6.3) for each of our three groups of assets, we first esti-

mate the parameters of the conditional factor model (9.4 .1) and the MPP
weights y* for monthly SBU, SIZE, and SECTOR asset returns using the
first 20 years of our sample, from 1947 :1 to 1966:12 . The one-month-ahead

naive and conditional forecasts, ZÍ and Zb, are then generated month by
month beginning in 1967:1 and ending in 1993 :12, using a rolling proce-
dure where the earliest observation is dropped as each new observation is
added, keeping the rolling sample size fixed at 20 years of monthly obser-
vations. Therefore, the conditional-factor model's parameter estimates and
the MPP's weights y* are updated monthly.

For the 324-month out-of-sample period from 1967 :1 to 1993:12, the

ordinary least squares estimates of (9.6 .3) for the three groups of assets are
reported in Panel (a) of Table 9 .9, labeled "monthly:monthly" to emphasize
that monthly returns are used to construct the forecast and that monthly
returns are being forecasted (see below) . For the SBU asset group, the
z-statistic of the slope coefficient is 1 .47, implying that the power of the
one-step-ahead conditional forecast of the ΜΡΡ return is statistically indis-
tinguishable from that of the naive forecast. However, for both the SIZE
and SECTOR groups, the corresponding z-statistics are 3 .20 and 3.30, re-
spectively, which suggests that the conditional forecasts do add value in these
cases .

• see how the return horizon affects forecast power, we perform a
similar analysis for annual returns- we use annual returns to forecast one
annual-step ahead. These results are reported in Panel (b) of Table 9 .9,

labeled "annual:annual." At the annual frequency, conditional forecasts
seem to add value for SBU and SIZE assets, but not for SECTOR assets .

Finally, in Panel (c) of Table 9.9, we consider the effect of using annual
returns to forecast monthly returns . For example, annual returns are used
to forecast one annual-step ahead, but this annual forecast is divided by 12
and is considered the one-month-ahead forecast . This procedure is then
repeated in a rolling fashion for each month and the results are reported
in Table 9.9's Panel (c) labeled "annual :monthly." 18

Interestingly, in the mixed return/forecast-horizon case, conditional
'

	

forecasts add value for all three asset groups, with z-statistics ranging from

~ RWe have investigated other mixed return/forecast-horizon regressions but, in the interest
of brevity, do not report them here .
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Table 9.9. Out-of-sample evaluation of conditional one-step-ahead forecasts of MPΡ using a
regression model with six predictors

Asset group

	

Constant Ζδ - Ζ° D.W. b

	

R2

(a) Monthly :Monthly`
SBU

	

-0.01

	

0.32

	

1 .91

	

0.013
(-0.05)

	

(1.47)
SIZE

	

-0.64

	

0.53

	

1 .83

	

0.034
(-1.46)

	

(3 .20)
SECTOR

	

-0.35

	

0.51

	

1 .71

	

0.035
(-0.95)

	

(3 .30)
(b) Annual:Annual`

SBU

	

-1.31

	

0.36

	

2.13

	

0.182
(-0.43)

	

(2.38)
SIZE

	

-1.96

	

0.25

	

1 .81

	

0.104
(-0.46)

	

(2 .39)
SECTOR

	

-0.45

	

0.24

	

1 .62

	

0.075
(-0.09)

	

(1 .67)
(c) Annual:Monthly ~

SBU

	

-0.35

	

0.72

	

1 .81

	

0.052
(-1.59)

	

(3.85)
SIZE

	

-0.51

	

0.64

	

1 .75

	

0.043
(-1.82)

	

(3 .65)
SECTOR

	

-0.22

	

0.40

	

1 .64

	

0.013
(-0.77)

	

(2 .07)

°Conditional forecasts are evaluated by regressing the deviation of the MPP excess return from
its unconditional forecast on the deviation of the conditional ΜΡΡ excess return forecast from
the same unconditional forecast (denoted as Z b - Z") . Conditional forecasts for the time
period 1967:1 to 1993 :12 are constructed for three asset groups and for two time horizons .
Heteroskedasticity-consistent z-statistics are given in parentheses .
b Durbin-Watson test stastic for dependence in the regression residual .
`Forecasts are evaluated using a return horizon equal to the forecast horizon .
dAnnual returns are used to forecast monthly returns .

2.07 (SECTOR assets) to 3 .85 (SBU assets) . This suggests the possibility that
an optimal forecasting procedure may use returns of one frequency to fore-
cast those of another. In particular, we shall see in Section 9 .6.3 that within
the SBU asset group, the economic significance of predictability is consider-
ably greater when annual returns are used to forecast monthly returns than
for the monthly-return-horizon/monthly-forecast-horizon combination .

These out-of-sample forecast regressions suggest that statistically signif-
icant forecastability is present in the ΜΡΡ, but the degree of predictability
varies with the asset groups and with the return and forecast horizon .
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9.6.2 Merton's Measure of Market Timing

As another measure of the out-of-sample predictability of the MPP, consider
the following naive asset-allocation rule : If next month's ΜΡΡ return is
forecasted to exceed the risk-free rate, then invest the entire portfolio in it ;
otherwise, invest the entire portfolio in Treasury bills . More formally, let ~~
denote the fraction of the portfolio invested in the ΜΡΡ in month t . Then
our naive asset-allocation strategy is given by

1 ifΖ6>0
Bt =

0 if Zb < 0,

where Zb, defined in (9.6 .2), is the forecasted excess return on the ΜΡΡ, in
excess of the risk-free rate .

We can measure the out-of-sample predictability of the ΜΡΡ by using
Merton's (1981) framework for measuring market-timing skills . In particu-
lar, ~f the ΜΡΡ return Zr were considered the "market," then one could ask
whether the asset allocation rule ~~ exhibited positive market-timing perfor-
mance. Merton (1981) shows that this depends on whether the sum of p~

and p2 exceeds unity, where

ρι = Prob(θ ι = 1 Ι Ζί > 0),

	

(9.6.4)

ρΖ - Prob(Θ ι = 0 ~ Ζ~ < 0) .

	

(9.6.5)

These two conditional probabilities are the probabilities that the forecast is
correct in "up" and "down" markets, respectively . If pl + p2 is greater than
1, then the forecast ~ j has value, i .e ., ZÍ is predictable ; otherwise it does not .

To perform the Merton test, we use the same 20-year rolling estima-
tion procedure as in Section 9 .6.2 to generate our ΜΡΡ returns and the
one-month-ahead forecast ~ i . From these forecasts and the realized excess
returns Zt of the ΜΡΡ, we construct the following (2 x 2) contingency table :

Ζr > 0 Ζi < 0
B t > 0 ~

	

ηι

	

η2

	

(9.6.6)

Θ 1 < 0 Νι-ηι Ν2-η2 '

where ni is the number of correct forecasts in "up" markets, rι2 is the num-
ber of incorrect forecasts in "down" markets, and N~ and N2 are the number
of up-market and down-market periods, respectively, in the sample . Hen-
riksson and Merton (1981) show that ni has a hypergeometric distribu-
tion under the null hypothesis of no market-timing ability, which may be
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Table 9.10. Out-of-sample evaluation of conditional one-ste~ι-ahead forecasts of MPΡ using
Merton's measure of market timing°

Asset

	

Ζ>0

	

Ζ>0

	

Ζ<0

	

Ζ<0
group

	

Ζ> 0

	

Ζ< 0

	

Ζ> 0

	

Ζ< 0

	

ρι +jhz

	

ρvalue

(a) Monthly:Monthly b
SBU

	

139

	

92

	

40

	

53

	

1 .172

	

0.001
SIZE

	

127

	

107

	

47

	

43

	

1 .021

	

0.349
SECTOR

	

137

	

105

	

43

	

39

	

1 .042

	

0.226

(b) Annual:Annualb
SBU

	

15

	

4

	

4

	

4

	

1 .289

	

0.048
SIZE

	

14

	

5

	

4

	

4

	

1 .237

	

0.092
SECTOR

	

13

	

5

	

6

	

3

	

1 .056

	

0.362

(c) Annual:Monthly`
SBU

	

160

	

98

	

29

	

37

	

1 .181

	

0.002
SIZE

	

130

	

94

	

49

	

51

	

1 .090

	

0.038
SECTOR

	

144

	

100

	

41

	

39

	

1 .078

	

0.084

`Merton (1981). The number of outcomes are calculated for each of four possible excess
return-forecast outcomes: a positive MPP excess return and a positive ΜΡΡ conditional forecast,
a positive excess return and a nonpositive conditional forecast, a nonpositive excess return and
a positive conditional forecast, and a nonpositive excess return and a nonpositive conditional
forecast . Z denotes the excess return and Z denotes the conditional forecast ; pt is the sample
probability of a positive conditional forecast given a positive excess return and fx~ is the sample
probability of a nonpositive conditional forecast given a nonpositive excess return . The pvalue
is the probability of obtaining at least the number ofcorrect positive coπditional forecasts under
the null hypothesis of no forecastability. Conditional forecasts for the time period 1967 :1 to
1993:12 are constructed for three asset groups and for two time horizons .
b Forecasts are evaluated using a return horizon equal to the forecast horizon .
`Annual returns are used to forecast monthly returns .

approximated by

η1
α Ν ηΝι

	

η1 Νι Ν2 (Ν - η)

	

(9 .6.7)
Ν

	

Ν2(Ν-1)

where N - Nl + N2 and n = nt + n2 .
Using this sampling theory, we perform nonparametric tests for market-

timing ability in our one-step-ahead conditional forecasts in Table 9 .10 for
the same return- and forecast-horizon combinations as in Table 9 .9. Ta-
ble 9 .10 reports the number of forecasts in each category of (9.6.6), the
estimated sum pl + pz, and the p value based on (9.6 .7) .

The three panels of Table 9 .10 show that predictability is statistically
significant for the SBU asset group at both horizons . When annual returns
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are used to construct monthly forecasts, both SBU and SIZE asset groups
have significant predictability. Merton's (1981) market-timing measure also
confirms the presence of predictability in the MPP .

9.6.3 The Profitability of Predictability

As a final out-of-sample measure of predictability-one that addresses the
economic significance of the MPP's predictability-we compare the total
return of a passive or buy-and-hold investment in the ΜΡΡ over the entire
sample period with the total return of the active asset allocation strategy
described in Section 9 .6 .2 . In particular, for each of the three asset groups,
and for the various return and forecast horizons, we calculate the following
two quantities :

r
W~assive = Π(1 + R~ ~~

	

(9.6.8)
[=1

Τ

W,εtίνe =_ Π ~θt(1 + R~) -~ (1 - Θε)(1 ~- Rft)~ ,

	

(9.6.9)
ι=ι

where ~~ is given in (9.6.4), Rt* is the simple return of the ΜΡΡ in month
t, and WT is the end-of-period value of an investment of $1 over the entire
investment period, which we take to be the 324-month period from 1967 :1

to 1993:12 to match the empirical results from Sections 9 .6.1 and 9.6.2 .
Table 9.11 shows that the active asset-allocation strategy generally out-

performs the passive for each of the three asset groups for all three re-
turn/forecast horizon pairs, yielding a higher mean return, a lower stan-
dard deviation of return, and a larger total return WT over the investment
period. For example, the monthly passive strategy for the ΜΡΡ in the SEC-
TOR group of assets has a mean excess return of 0.82% per month and a
standard deviation of 6 .15% per month, whereas the active strategy has a
mean excess return of 1 .00% per month and a standard deviation of 5.26%
per month. These values imply Sharpe ratios of 12 x 0 .82/6.15 = 0.462

for the passive SECTOR strategy and 12 x 1 .00/5 .26 = 0.659 for the active

SECTOR strategy.
Table 9.11 also shows that the total returns of the active strategy dom-

inate those of the passive for each of the three asset groups and for all
return/forecast horizon pairs . A passive $1 monthly investment in the SEC-
TOR asset group at the beginning of 1967 :1 yields a total return of $46 .73

at the end of 1993 :12, whereas the corresponding active strategy yields a

return of $99.38 .

Of course, the total returns of the active strategy do not include transac-
tions costs, which can be substantial . To determine the importance of such
costs, Table 9 .11 also reports break-even transactions costs, defined as that



Table 9.11 . Out-of-sample evaluation of conditional one-step-ahead forecasts of MPΡ using a comparison of passive
and active investment strategies in the portfolio°

Passive strategy

	

Active strategy

Mean

	

Mean

	

Number
Asset

	

excess

	

S.D.

	

Ending

	

excess

	

S.D.

	

Ending

	

of

	

Break-even
group

	

return(%)

	

(%)

	

value($)

	

return(%)

	

(%)

	

value($) ° switches`

	

cost(%~) d

	

~

(a) Monthly :Monthly
SBU

	

0.46

	

3.72

	

21 .21

	

0.58

	

3.20

	

33.15

	

58

	

0.77

	

x

SIZE 0.76 7.65 28.98 0.96 6.17 75.57 80 1 .19 ~
SECTOR

	

0.82

	

6.15

	

46.73

	

1 .00

	

5.26

	

99.38

	

66

	

1 .14

	

~

(b) Annual:Annual b
SBU

	

5.93

	

17.57

	

19.44

	

7.98

	

14.26

	

35.70

	

12

	

4.94

	

i.
SIZE 8.77 22.63 30.89 9.72 18.09 48.00 10 4.31 Q
SECTOR

	

10.33

	

25.55

	

40.55

	

10.99

	

22.07

	

58.21

	

12

	

2.97

	

o-

(~) Annual:M~nthly
SBU

	

0.54

	

3.93

	

27.55

	

0.70

	

3.53

	

47.70

	

30

	

1 .81

	

~
SIZE

	

0.46

	

5.03

	

18.01

	

0.66

	

4.09

	

39.14

	

34

	

2.26

	

~ó
SECTOR

	

0.67

	

4.99

	

35.01

	

0.78

	

4.24

	

56.30

	

16

	

2.93

	

~ó
A~

aConditional forecasts for the time period 1967 :1 to 1993:12 are constructed for three asset groups and for two time Q
horizons. The forecasts are evaluated using a return horizon equal to the forecast horizon . For annual forecasts a 0.
monthly return horizon is also considered . The active strategies invest 100% in the MPP if the conditional excess return ~
forecast is positive and invest 100% in Treasury bills otherwise . ~
bTerminal value of a $1 investment over entire sample .
`Number of times the active strategy shifted into or out of the ΜΡΡ .
done-way percentage transaction cost that equates the active and passive strategy's ending value .
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percentage cost 100 x s of buying or selling the MPP that would equate the
active strategy's total return to the passive strategy's . More formally, if the
active strategy requires k switches into or out of the ΜΡΡ over the 324-month
investment period, then the one-way break-even transactions cost 100 x s is
defined by

WTassive = WT~tive X (1 - S) k ,

	

(9.6.10)

WPassive

	

1/k

s = 1 - ~ WAcrive )

	

(9 .6.11)
r

For a monthly-return/monthly-forecast horizon, Table 9 .11 shows that the
number of switches into or out of the ΜΡΡ ranges from 58 (SBU) to 80
(SIZE), implying two or three switches per year on average . This, in turn,
implies that the one-way transactions cost would have to be somewhere
between 0.77% (SBU asset group) and 1.19% (SIZE asset group) for the
active strategy to yield the same total return as the passive .

At the annual-return/annual-forecast horizon, the number of switches
declines by construction, dropping to approximately one switch every 4 .5
years, hence the break-even transactions cost increases dramatically . In this
case, the one-way transactions cost would have to be somewhere between

2.97% and 4.94% to equate the active and passive strategies' total returns .
Now we cannot conclude from Table 9.11 that the ΜΡΡ is a market

inefficiency that is exploitable by the average investor since we have not
formally quantified the (dynamic) risks of the passive and active strategies .
Although the active strategy's return has a lower standard deviation and
a higher mean, this need not imply that every risk-averse investor would
prefer it to the passive strategy . To address this more complex issue, we
must specify the investor's preferences and derive his optimal consumption
and portfolio rules dynamically, which lies beyond the scope of this chapter .
Nevertheless, the three out-of-sample measures do indicate the presence of
genuine predictability in the ΜΡΡ, which is both statistically and economi-
cally significant . 19

9.7 Conclusion

That stock-market prices contain predictable components is now a well-
established fact . At issue are the economic sources of predictability in asset
returns, since this lies at the heart of several current controversies involy-
ing the efficient-markets hypothesis, stock-market rationality, and the exis-
tence of "excessively" profitable trading strategies . Our results show that
predictable components are indeed present in the stock market, and that

19 See also Breen, Glosten, and Jagannathan (1989, Table N), who find similar results for
monthly equal- and value-weighted NYSE stock index returns .



284

	

9. Maximizing Predictability in the Stock and Bond Markets

sophisticated forecasting models based on measures of economic conditions
do have predictive power. By studying the MPP, we see that the degree and
sources of predictability also vary considerably among assets and over time .
Some industries have better predictive power at shorter horizons, whereas
others have more power at longer horizons . The changing composition
of the MPP points to important differences among groups of securities that
warrant further investigation . Nevertheless, predictability is both statistically
and economically significant, both in sample and out of sample .

We hasten to emphasize that predictabilit~es need not be a symptom
of market inefficiency. While dynamic investment strategies exploiting pre-
dictability have yielded higher returns historically, we have not attempted to
adjust for risk or for subtle selection biases that might explain such phenom-
ena. But despite the ambiguity of the economic sources of predictability,
our results suggest that ignoring predictability cannot be rational either.



Part III

IN PA~~s I AND II w~ ~AV~ DoCUMEN~~D the presence of statistically signifi-
cant sources of predictability in recent US stock and bond returns . The nat-
ural question that follows is whether such predictability is also economically
significant, i .e ., is it something that investors should consider in formulat-
~ng their portfolio strategies, or are the effects too small, too short-lived, or
too concentrated in illiquid securities to be of any practical value? In other
words, is there value left after trading costs have been deducted? This de-
pends, of course, on the magnitude of trading costs, the frequency of trades,
and the impact of market conditions on both. These implementation issues
naturally revolve around higher-frequency investment horizons-intradaily
trading, in contrast to the weekly and monthly horizons of the studies in
Parts I and II-and the microstructure of securities markets . This is the
focus of Part III .

In Chapter 10 we develop a nonlinear econometric model of transac-
tion price changes-also known as "tick" data-that relates trade-b~-trade
price changes to trade size, past order flow, bid/offer spreads, elapsed time
between trades, and other aspects of market conditions . Using a statistical
technique known as ordered probit, we are able to accommodate pace discrete-
ness (until recently, stock prices moved in minimum increments of 1/8 of
a dollar, and currently move in minimum increments of 1/16), an impor-
tant feature of the data that cannot be ignored, especially for purposes of
measuring price impact and trading costs . The ordered probit model allows
us to estimate the conditional distribution of price changes, conditional on
the regressors, and from this conditional distribution we can develop esti-
mators of market liquidity and price impact while controlling for the effects
of order flow, volatility, bid/offer spreads, and general market conditions .

Transaction prices also provide valuable insights into the linkages betz~een
markets. In particular, in Chapters 11 and 12 we explore the link between the
futures market and the cash market for the Standard and Poor's 500 Index .
In an efficient market, we would expect the link between the cash and futures
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markets to be a strong one . Chapter 11 investigates the properties of the
link by considering both the cash index price and the futures contract price .
We hypothesize that the tightness of the link is maintained by arbitrage
activities, and test this and related hypotheses using transactions data . We
find evidence that futures-price changes are more volatile than spot-price
changes, and this finding is not completely explained by nonsynchronous
trading (see Chapter 4), but is consistent with information being reflected
more quickly in the futures market. Using the cost-of-carry relation, we
examine the time series behavior of the basis, i .e ., the difference between
the futures price and the spot price adjusted for the cost of carry . We find
that the basis exhibits greater volatility the longer the time to maturity of
the futures contract and also displays some path dependence. Both of the
findings are consistent with arbitrageurs playing a key role in linking the
spot and futures markets together .

In Chapter 12, we turn to "Black Monday," October 19, 1987 . This was
one of the most dramatic trading days in recent stock market history, with
a decline in US stock market prices of more than 20% . During this precipi-
tous decline, demand for trading outstripped the financial system's capacity,
market linkages suffered a breakdown, and pandemonium ensued . This un-
usual event provides a unique opportunity to study the behavior of prices
in the absence of a tight link between the spot and futures markets, which
can shed considerable light on the importance of such links in general .

In particular, we examine the behavior of individual stocks on October
19 and 20, 1987, and find that on these two days not only was there a
breakdown of the link between the cash index and futures price, but there
was also a breakdown of the link among stocks . Stocks with larger order
imbalances declined more on Monday and rebounded more on Tuesday.
These results suggest that at least part of the decline was not due to economic
factors, but due to the inability of the system to handle the trading volume
and that, with substantially more capacity in place today, the likelihood of a
repeat of October 19, 1987 is reduced .

The studies in Part III underscore the importance of implementation is-
sues in exploiting the research findings of Parts I and II . While predictability
in US stock and bond markets are both statistically and economically sig-
nificant, an entirely different set of technologies mad be required to take
advantage of such predictability, some of which we develop in this last part .
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An Ordered Probit Analysis
of Transaction Stock Prices

10.1 Introduction

VIRTUALLY ALL EMPIRICAL INVESTIGATIONS of the microstructure of securi-
ties markets require a statistical model of asset prices that can capture the
salient features of price movements from one transaction to the next . For
example, because there are several theories of why bid/ask spreads exist,
a stochastic model for prices is a prerequisite to empirically decomposing
observed spreads into components due to order-processing costs, adverse
selection, and specialist market power. l The benefits and costs of particular
aspects of a market's microstructure, such as margin requirements, the de-
gree of competition faced by dealers, the frequency that orders are cleared,
and intraday volatility also depend intimately on the particular specification
of price dynamics . 2 Even the event study, a tool that does not explicitly
assume any particular theory of the market microstructure, depends heavily
on price dynamics (see, for example, Barclay and Litzenberger (1988) ) . In
fact, it is difficult to imagine an economically relevant feature of transaction
prices and the market microstructure that does not hinge on such price
dynamics .

Since stock prices are perhaps the most closely watched economic vari-
ables to date, they have been modeled by many competing specifications,
beginning with the simple random walk or Brownian motion. However, the
majority of these specifications have been unable to capture at least three
aspects of transaction prices. First, on most U .S. stock exchanges, prices
are quoted in increments of eighths of a dollar, a feature not captured by

1 See, for example, Glosten and Harris (1988), Hasbrouck (1988), Roll (19ß4a), and Stoll
(1989) .

z See Cohen et al . (1986), Harris, Sofianos, and Shapiro (1994), Hasbrouck (1991a, 1991b),
Madhavan and Smidt (1991), and Stoll and ~Nt~aley (1990) .
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stochastic processes with continuous state spaces. Of course, discreteness is
less problematic for coarser-sampled data, which may be well-approximated
by a continuous-state process . But discreteness is of paramount importance
for intraday price movements, since such finely-sampled price changes may
take on only five or six distinct values .3

The second distinguishing feature of transaction paces is their timing,
which is irregular and random . Therefore, such prices may be modeled by
discrete-time processes only if we are prepared to ignore the information
contained in waiting times between trades .

Finally, although many studies have computed correlations between
transaction price changes and other economic variables, to date none of
the existing models of discrete transaction prices have been able to quantify
such effects formally. Such models have focused primarily on the uncondi-
tional distribution of price changes, whereas what is more often of economic
interest is the conditional distribution, conditioned on quantities such as vol-
ume, time between trades, and the sequence of past price changes . 4 For
example, one of the unresolved empirical issues in this literature is what the
total costs of immediate execution are, which many take to be a measure
of market liquidity. Indeed, the largest component of these costs mad be
the price impact of large trades . A floor broker seeking to unload 100,000
shares of stock will generally break up the sale into smaller blocks to mini-
mize the price impact of the trades . How do we measure price impact? Such
a question is a question about the conditional distribution of price changes,
conditional upon a particular sequence of volume and price changes, i .e .,
order flow.

In this chapter, we propose a specification of transaction price changes
that addresses all three of these issues, and yet is still tractable enough to per-
mit estimation via standard techniques . This specification is known as ordered
Probit, a technique used most frequently in cross-sectional studies of depen-
dent variables that take on only a finite number of values possessing a natural
ordering . 5 For example, the dependent variable might be the level of edu-
cation, as measured by three categories: less than high school, high school,
and college education . The dependent variable is discrete, and is naturally
ordered since college education always follows high school (see Maddala

sThe implications of discreteness have been considered in many studies, e .g., Cho and
Frees (1988), Gottlieb and ~{alay (1985), Harris (1989a, 1991), Petersen (1986), and Pritsker
(1990) .

4There is, however, a substantial literature on price/volume relations in which discreteness
is ignored because of the return horizons involved (usually daily or longer) . See, for example,
Campbell, Grossman, and Wang (1991), Gallant, Rossi, and Tauchen (1992), and Karpoff
(1987) .

S The ordered Probit model was developed by Aitchison and Silvey (1957) and Ashford
(1959), and generalized to nonnormal disturbances by Gurland, Lee, and Dahm (1960) . For
more recent extensions, see Maddala (1983), McCullagh (1980), and Thisted (1991) .
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(1983) for further details) . Heuristically, ordered probit analysis is a general-
ization of the linear regression model to cases where the dependentvariable
is discrete . As such, among the existing models of stock price discreteness
(e .g., Ball (1988), Cho and Frees (1988), Gottlieb and Kalay (1985), and
Harris (1991) ) , ordered probit is perhaps the only specification that can
easily capture the impact of "explanatory" variables on price changes while
also accounting for price discreteness and irregular trade times .

Underlying the analysis is a "virtual" regression model with an unob-
served continuous dependent variable Z* whose conditional mean is a linear
function of observed "explanatory" variables . Although Z* is unobserved,
it is related to an observable discrete random variable Z, whose realizations
are determined by where Z* lies in its domain or state space. By partitioning
the state space into a finite number of distinct regions, Z may be viewed as
an indicator function for Z* over these regions. For example, a discrete
random variable Z taking on the values { - á , 0 , s } may be modeled as an

indicator variable that takes on the value -8 whenever Z* < ~~, the value 0
whenever ~~ < Z* < ~ 2, and the value á whenever Z* > ~ 2 . Ordered probit
analysis consists of estimating mil, ~2, and the coefficients of the unobserved
regression model that determines the conditional mean and variance of Z* .

Since mil, ~2, and Z* may depend on a vector of "regressors" X, or-
dered probit analysis is considerably more general than its simple structure
suggests. In fact, it is well-known that ordered probit can fit any arbitrary
multinomial distribution . However, because of the underlying linear regres-
sion framework, ordered probit can also capture the price effects of many
economic variables in a way that models of the unconditional distribution
of price changes cannot.

To motivate our methodology and to focus it on specific market mi-
crostructure applications, we consider three questions concerning the be-
havior of transaction prices. First, how does the particular sequence of trades
affect the conditional distribution of price changes, and how do these ef-
fects differ across stocks? For example, does a sequence of three consecutive
buyer-initiated trades ("buys") generate price pressure, so that the next price
change is more likely to be positive than if the sequence were three con-
secutive seller-initiated trades ("sells") , and how does this pressure change
from stock to stock? Second, does trade size affect price changes as some
theories suggest, and if so, what is the price impact per unit volume of trade
from one transaction to the next? Third, does price discreteness matter? In
particular, can the conditional distribution of price changes be modeled as
a simple linear regression of price changes on explanatory variables without
accounting for discreteness at all? Within the context of the ordered probit
framework, we shall obtain sharp answers to each of these questions .

In Section 10.2, we review the ordered probit model and describe its
estimation via maximum likelihood . We describe the data in Section 10.3



290

	

10 . An Ordered Probit Analysis of Transaction Stock Prices

by presenting detailed summary statistics for an initial sample of six stocks .
In Section 10 .4, we discuss the empirical specification of the ordered probit
model and the selection of conditioning or "explanatory" variables . The
maximum likelihood estimates for our initial sample are reported in Sec-
tion 10.5, along with some diagnostic specification tests . In Section 10 .6,
we use these maximum likelihood estimates in three specific applications :
(1) testing for order-flow dependence, (2) measuring price impact, and
(3) comparing ordered probit to simple linear regression . And as a check
on the robustness of our findings, in Section 10 .7 we present less detailed
results for a larger and randomly chosen sample of 100 stocks . We conclude
in Section 10 .8 .

10.2 The Ordered Probit Model

Consider a sequence of transaction prices P(to), P(t~), P(t2), . . . , P(tn ) ob-
served at times to, tl, t2, . . . , tn , and denote by Z~, Z~, . . . , Zn the correspond-
ing price changes, where Zk =_ P(tk) - P(tk_ 1 ) is assumed to be an integer
multiple of some divisor called a "tick" (such as an eighth of a dollar) . Let
Zk denote an unobservable continuous random variable such that

= Χkμ ~- Εk, Ε~εk ~ Xk~ _ ~, ~k i .n .i .d . Ν(0, σk)

	

(10.2 .1)

where "i.n .i .d ." indicates that the Gk's are independently but not identically
distributed, and Xk is a q x 1 vector of predetermined variables that governs
the conditional mean of Zk . Note that subscripts are used to denote "trans-
action" time, whereas time arguments tk denote calendar or "clock" time, a
convention we shall follow throughout the chapter .

The essence of the ordered probit model is the assumption that ob-
served price changes Zk are related to the continuous variable Zk in the
following manner:

sl if Ζk Ε Αι ,
S2 Ί~ Ζk Ε Α2,

Ζk =

	

(10.2.2)

s,,, ίf Ζk Ε Α,,, ,

where the sets A~ form a partition of the state space S* of Zk , i .e ., S* = U~ 1 A~
and Ai ~ A~ = fó for i ~ j, and the se 's are the discrete values that comprise
the state space S of Zk .

The motivation for the ordered probit specification is to uncover the
mapping between S* and S and relate it to a set of economic variables or
"regressors ." In our current application, the se's are 0, -g, +8, -8, -1-g,
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and so on, and for simplicity we define the state-space partition of S* to be
intervals :

Αι =- (- φ, αι ~ ,

Α2 =- (αι, α2~,

Α Ζ = (ασ-ι, αε~,

	

(10.2 .5)

Αηι = (am-ι+ φ) •

(10.2.3)

(10.2.4)

(10.2 .6)

Although the observed price change can be any number of ticks, positive
or negative, we assume that m in (10 .2.2) is finite to keep the number of
unknown parameters finite . This poses no problems, since we may always
let some states in S represent a multiple (and possibly countably infinite)
number of values for the observed price change . For example, in our em-
pirical application we define s~ to be a price change of -4 ticks or less, ss to
be a price change of -~4 ticks or more, and s2 to s8 to be price changes of -3
ticks to +3 ticks respectively. This parsimony is obtained at the cost of losing
price resolution-under this specification the ordered probit model does not
distinguish between price changes of +4 and price changes greater than +4
(since the +4-tick outcome and the greater than +4-tick outcome haυe been
grouped together into a common event) , and similarly for price changes of
-4 ticks versus price changes less than -4 . Of course, in principle the reso-
lution may be made arbitrarily finer by simply introducing more states, i .e .,
by increasing m. Moreover, as long as (10 .2.1) is correctly specified, then
increasing price resolution will not affect the estimated ß's asymptotically
(although finite sample properties may differ) . However, in practice the
data will impose a limit on the fineness of pace resolution simply because
there will be no observations in the extreme states when m is too large,
in which case a subset of the parameters is not identified and cannot be
estimated .

Observe that the Gk's in (10 .2.1) are assumed to be conditionally inde-
pendently but not identically distributed, conditioned on the Xk's and other
economic variables Wk influencing the conditional variance ~k . 6 Thίs al-
lows for clock-time effects, as in the case of an arithmetic Brownian motion
where the variance ~k of price changes is linear in the time between trades .
We also allow for more general forms of conditional heteroskedasticity by
letting ~k depend linearly on other economic variables Wk, which differs

6Unless explicitly stated otherwise, all the probabiliáes we deal with in this study are con-
ditional probabilities, and all statements concerning these probabili~es are conditional state-
ments, conditioned on these variables.
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from Engle's (1982) ARCH process only in its application to a discrete de-
pendent variable model requiring an additional identification assumption
that we shall discuss below in Section 10 .4 .

The dependence structure of the observed process Zk is clearly induced
by that of Zk and the definitions of the Ad's, since

P(Zk = s~ ~ Z~-~ = s~) = P(Z~ E Ai ~ Zk~ E A~) .

	

(10.2.7)

As a consequence, if the variables Xk and Wk are temporally independent,
the observed process Zk is also temporally independent . Of course, these are
fairly restrictive assumptions and are certainly not necessary for any of the
statistical inferences that follow . We require only that the Gk's be conditionally
independent, so that all serial dependence is captured by the Xk's and the
Wk's. Consequently, the independence of the Gk's does not imply that the
Zk 's are independently distributed because we have placed no restrictions
on the temporal dependence of the Xk's or Wk's .

The conditional distribution of observed price changes Zk , conditioned
on Xk and Wk, is determined by the partition boundaries and the particular
distribution of ~k . For Gaussian Gk 's, the conditional distribution is

Ρ(Ζk=Si ~ Χk, Wk)

- Ρ(Χkβ + Εk Ε Ai ~ Χk, Wk)

	

(10 .t .ó)

Ρ(Χkβ+εk < αι Ι Χk, Wk)

	

if i = 1,

- Ρ(ατ-ι<Χkβ+εk<α~ Ι Xk,Wk) if 1<i<m,

	

(10.2.9)
Ρ(a m-ι < Χk,Β+εk Ι Χk, Wk)

	

if i = m,

Φ ( αι_Χ
αρ\

	

if i = 1σ

	

)μ

Φ \αι-Χkβ\ _ φ ~α;-ι-Χαβ\ if 1 G 2σμ /Ι

	

ι

	

σ

	

/
1ρ_

	

' < m

	

(10.2.10)
α,π-ι -Χk,Β

1-Φ(	~k

	

if i=m,

where ~( •) is the standard normal cumulative distribution function .
To develop some intuition for the ordered probit model, observe that

the probability of any particular observed price change is determined by
where the conditional mean lies relative to the partition boundaries . There-
fore, for a given conditional mean Xkß, shifting the boundaries will alter the
probabilities of observing each state (see Figure 10 .1) . In fact, by shifting
the boundaries appropriately, ordered probit can fit any arbitrary multino-
mial distribution. This implies that the assumption of normality underlying
ordered probit plays no special role in determining the probabilities of
states; a logistic distribution, for example, could have served equally well .
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Figure 10.1 . Illustration of ordered Probit probabilities p, of observing a price change of s~
ticks, which are determined by where the unobservable "virtual " price change Zk falls . In
particular, if Zk falls in the interval (~~_ i , te e], then the ordered Probit model implies that
the observed price change Zk is s~ ticks . More formally, p~ _- Prob (Z~ = st ~ ~~, W~) _
Prob (~ ;_~ < Zk < ~ i ~ Xk, Wk ), i = 1, . . . , 9, where, for n~tational simplicity, we define
~~ _ -oo and ~ 9 =- -}-oo . The ordered Probit model captures the effect of economic variables
~~, W~ on the virtual price change and places enough structure on the probabilities p~ to permit
their estimation by maximum likelihood .

However, since it ~s considerably more difficult to capture conditional het-
eroskedasticity in the ordered logit model , we have chosen the Gaussian
specification .

Given the partition boundaries, a higher conditional mean Xkß implies
a higher probability of observing a more extreme positive state . Of course,
the labeling of states is arbitrary , but the ordered Probit model makes use
of the natural ordering of the states . The repressors allow us to separate
the effects of various economic factors that influence the likelihood of one
state versus another. For example , suppose that a large positive value of
X~ usually implies a large negative observed price change and vice versa .
Then the ordered Probit coefficient ,Bl will be negative in sign and large in
magnitude (relative to ~k of course) .

By allowing the data to determine the partition boundaries a, the co-
efficients ,B of the conditional mean, and the conditional variance ~k , the
ordered Probit model captures the empirical relation between the unob-
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servable continuous state space S* and the observed discrete state space S
as a function of the economic variables Xk and Wk .

10.2.1 Other Models of Discreteness

From these observations, it is apparent that the rounding/eighths-barriers
models of discreteness in Ball (1988), Cho and Frees (1988), Gottlieb and
Kala~ (1985) and Harris (1991) may be reparametrized as ordered probit
models. Consider first the case of a "true" price process that is an arithmetic
Brownian motion, with trades occurring only when this continuous-state
process crosses an eighths threshold (see Cho and Frees (1988) ) . Observed
trades from such a process may be generated by an ordered probit model
in which the partition boundaries are fixed at multiples of eighths and the
single regressor is the time interval (or first-passage time) between crossings,
appearing in both the conditional mean and variance of Zk .

To obtain the rounding models of Ball (1988), Gottlieb and Kalay
(1985) , and Harris (1991) , which do not make use of waiting times between
trades, define the partition boundaries as the midpoint between eighths,
e .g ., the observed price change is $ if the virtual price process lies in the

interval [ 16 , ~s)> and omit the waiting time as a regressor in both the condi-
tional mean and variance (see the discussion in Section 10 .6.3 below) .

The generality of the ordered probit model comes from the fact that the
rounding and eighths-barrier models of discreteness are both special cases
of ordered probit under appropriate restrictions on the partition bound-
aries. In fact, since the boundaries may be parametrized to be time- and
state-dependent, ordered probit can allow for considerably more general
kinds of rounding and eighths barriers . In addition to fitting any arbitrary
multinomial distribution, ordered probit may also accommodate finite-state
Markov chains and compound Poisson processes .

Of course, other models of discreteness are not necessarily obsolete,
since in several cases the parameters of interest may not be simple functions
of the ordered probit parameters . For example, a tedious calculation will
show that although Harris's (1991) rounding model may be represented as
an ordered probit model, the bid/ask spread parameter c is not easily recov-
erable from the ordered probit parameters . In such cases, other equivalent
specifications may allow more direct estimation of the parameters of interest .

10.2.2 The Likelihood Function

Let Ytk be an indicator variable which takes on the value one if the realization
of the kth observation Zk is the ith state st, and zero otherwise. Then the
log-likelihood function G for the vector of price changes Z = [Zt ~z • • • Zn]',
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conditional on the explanatory variables X = [X~ X2 • • • Xn ]', is given by

G(Z ~ X) _ ~ Yik • log ~
~~ Xk,B

k=1

	

~k

+ Σ Ϋίk ~ log
[Φ ( α2

- Χkβ1 _

Φ

\αά_ι

- Χkβl1

i=2

	

σk

	

σk

~m 1 - X~F'
+ Ymk 'log

Cl
- ~ ~	~

	

(10.2.11)
~k

Recall that ~k is a conditional variance, conditioned upon Xk . This allows
for conditional heteroskedasticity in the Zk's, as in the rounding model of
Cho and Frees (1988) where the Zk 's are increments of arithmetic Brownian
motion with variance proportional to tk - tk_ι . In fact, arithmetic Brownian
motion may be accommodated explicitly by the specification

Xkß = ~~tk,

	

(10.2.12)

~k = y 2~tk .

	

(10.2.13)

More generally, we may also let ~k depend on other economic variables Wk,
so that

~,
σk = yρ + Σ yi2 W k

=ι

There are, however, some constraints that must be placed on these param-
eters to achieve identification since, for example, doubling the ms's, the ß's,
and ~k leaves the likelihood unchanged. We shall return to this issue in
Section 10.4 .

10.3 The Data

The Institute for the Study of Securities Markets (ISSM) transaction database
consists of time-stamped trades (to the nearest second), trade size, and
bid/ask quotes from the New York and American Stock Exchanges and the
consolidated regional exchanges from January 4 to December 30 of 1988 .
Because of the sheer size of the ISSM database, most empirical studies of
the market microstructure have concentrated on more manageable subsets
of the database, and we also follow this practice . But because there is so
much data, the "pretest" or "data-snooping" biases associated with any non-
random selection procedure used to obtain the smaller subsets are likely to
be substantial . As a simple example of such a bias, suppose we choose our
stocks by the seemingly innocuous requirement that they have a minimum

(10.2.14)
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of 100,000 trades in 1988 . This rule will impart a substantial downward bias
on our measures of price impact because stocks with over 100,000 trades
per year are generally more liquid and, almost by definition, have smaller
price impact. Therefore, how we choose our subsample of stocks mad haυe
important consequences for how our results are to be interpreted, so we
shall describe our procedure in some detail here .

We first begin with an initial "test" sample containing five stocks that
did not engage in any stock splits or stock dividends greater than 3 2
during 1988: Alcoa, Allied Signal, Boeing, DuPont, and General Motors .
We restrict splits because the effects of price discreteness to be captured by
our model are likely to change in important ways with dramatic shifts in
the price level; by eliminating large splits we reduce the problem of large
changes in the price level without screening on prices directly . (Of course, if
we were interested in explaining stock splits, this procedure would obviously
impart important biases in the empirical results .) We also chose these five
stocks because they are relatively large and visible companies, each with a
large number of trades, and therefore likely to yield accurate parameter
estimates . We then performed the standard "specification searches" on
these five stocks, adding, deleting, and transforming regressors to obtain
a "reasonable" fit . By "reasonable" we mean primarily the convergence of
the maximum likelihood estimation procedure, but it must also include
Learner's (1978) kind of informal or ad hoc inferences that all empiricists
engage in .

Once we obtain a specification that is "reasonable," we estimate it with-

out further revision for our primary sample of six new stocks, chosen to yield a
representative sample with respect to industries, market value, price levels,
and sample sizes. They are International Business Machines Corporation
(IBM), Quantum Chemical Corporation (CUE), Foster Wheeler Corpora-
tion (FWC), Handy and Harman Company (HNH), Navistar International
Corporation (NAV) , and American Telephone and Telegraph Incorporated
(T) . (Our original primary sample consists of eleven stocks but we omitted
the results for five of them to conserve space . See Hausman, Lo, and MacKin-
lay (1991) for the full set of results . ) By using the specification derived from
the test sample on stocks in this fresh sample, we seek to lessen the impact
of any data-snooping biases generated by our specification searches . If, for
example, our parameter estimates and subsequent inferences change dra-
matically in the new sample (in fact, they do not) this might be a sign that
our test-sample findings were driven primarily by selection biases .

As a final check on the robustness of our specification, we estimate it
for a larger sample of 100 stocks chosen randomly, and these companies are
listed in Table 10 .5. From this larger sample, it is apparent that our smaller
six-stock sample does suffer from at least one selection bias : it is comprised
of relatively well-known companies . In contrast, relatively few companies
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in Table 10 .5 are as familiar. Despite this bias, virtually all of our empirical
findings are confirmed by the larger sample . To conserve space and to focus
attention on our findings, we report the complete set of summary statistics
and estimation results only for the smaller sample of six stocks, and present
broader and less detailed findings for the extended sample afterwards .

Of course, as long as there is cross-sectional dependence among the
two samples it is impossible to eliminate such biases completely . Moreover,
samples drawn from a different time period are not necessarily free from
selection bias as some have suggested, due to the presence of temporal de-
pendence. Unfortunately, nonexperimental inference is always subject to
selection biases of one kind or another since specification searches are an
unavoidable aspect of genuine progress in empirical research (see, for ex-
ample, Lo and MacKinlay (1990b) ) . Even Bayesian inference, which is not
as sensitive to the kinds of selection biases discussed in Learner (1978), can
be distorted in subtle ways by specification searches . Therefore, beyond our
test-sample procedure, we can only alert readers to the possibility of such
biases and allow them to adjust their own inferences accordingly .

10.3.1 Sample Statistics

We take as our basic time series the intraday price changes from trade to
trade, and discard all overnight price changes . That the statistical proper-
ties of overnight price changes differ considerably from those of intraday
price changes has been convincingly documented by several authors, most
recently by Amihud and Mendelson (1987), Stoll and Whaley (1990), and
Wood, McInish, and Ord (1985) . Since the three market microstructure ap-
plicat~ons we are focusing on involve intraday price behavior, and overnight
price changes are different enough to warrant a separate specification, we
use only intraday price changes. The first and last transaction prices of each
day are also discarded, since they differ systematically from other prices due
to institutional features (see Amihud and Mendelson (1987) for further
details) .

Several other screens were imposed to eliminate "problem" trades and
quotes, yielding sample sizes ranging from 3,174 trades for HNH to 206,794
trades for IBM. Specifically : (1) all trades flagged with the following ISSM
condition codes were eliminated : A, C, D, O, R, and Z (see the ISSM docu-
mentation for further details concerning trade condition codes) ; (2) trans-
actions exceeding 3,276,000 shares [termed "big trades" by ISSM] were also
eliminated; (3) because we use three lags of price changes and three lags
of five-minute returns on the S&P 500 index futures prices as explanatory
variables, we do not use the first three price changes or price changes during
the first 15 minutes of each day (whichever occurs later) as observations of
the dependent variable; and (4) since S&P 500 futures data were not a~ail-
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able on November 10, 11, and the first two trading hours of May 3, trades
during these times were also omitted .

For some stocks, a small number of transactions occurred at prices de-
nominated in ms 's, 32 's, or fi4 's of a dollar (non-NYSE trades) . In these

cases, we rounded the price randomly (up or down) to the nearest 8, and
if necessary, also rounded the bid/ask quotes in the same direction .

Quotes implying bid/ask spreads greater than 40 ticks or flagged with
the following ISSM condition codes were also eliminated : C, D, F, G, I, L,
N, P, S, V, X, and Z (essentially all "BBO-ineligible" quotes ; see the ISSM
documentation for further details concerning the definitions of the partic-
ular trade and quote condition codes, and Eikeboom (1992) for a thorough
study of the relative frequencies of these condition codes for a small subset
of the ISSM database) .

Since we also use bid and ask prices in our analysis, some discussion of
how we matched quotes to prices is necessary. Bid/ask quotes are reported
on the ISSM tape only when they are revised, hence it is natural to match
each transaction price to the most recently reported quote prior to the trans-
action. However, Bronfman (1991), Lee and Ready (1991), and others have
shown that prices of trades that precipitate quote revisions are sometimes
reported with a lag, so that the order of quote revision and transaction price
is reversed in official records such as the ISSM tapes . To address this issue,
we match transaction prices to quotes that are set at least five seconds prior to
the transaction; the evidence in Lee and Ready (1991) suggests that this will
account for most of the missequencing .

To provide some intuition for this enormous dataset, we report a few
summary statistics in Table 10 .1 . Our sample contains considerable price
dispersion, with the low stock price ranging from $3.125 for NAV to $104.250
for IBM, and the high ranging from $7.875 for NAV to $129.500 for IBM .
At $219 million, HNH has the smallest market capitalization in our sample,
and IBM has the largest with a market value of $69.8 billion .

For our empirical analysis we also require some indicator of whether a
transaction was buyer-initiated or seller-initiated . Obviously, this ~s a difficult
task because for every trade there is always a buyer and a seller . What we
are attempting to measure is which of the two parties is more anxious to
consummate the trade and is therefore willing to pay for it in the form
of the bid/ask spread . Perhaps the most obvious indicator is whether the
transaction occurs at the ask price or at the bid price ; if it is the former then
the transaction is most likely a "buy," and if it is the latter then the transaction
is most likely a "sell ." Unfortunately, a large number of transactions occur
at prices strictly within the bid/ask spread, so that this method for signing
trades will leave the majority of trades indeterminate .

Following Blume, MacKinlay, and Terker (1989) and many others, we
classify a transaction as a buy if the transaction price is higher than the
mean of the prevailing bid/ask quote (the most recent quote that is set at
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Table 10.1 . Summary statistics for transaction paces and corresponding ordered probit e~-
planatory variables of International Business Machines Corporation (IBM- 206, 794 trades),

Quantum Chemical Corporation (CL1E - 26, 927 trades), Foster Wheeler Corporation (FWC

- 18,199 trades), Handy and Harman Company (HNH - 3, 174 trades), Navistar Interna-
tional Corporation (NAV- 96,127 trades), and American Telephone and Telegraph Company

(T - 180, 726 trades), for the period from January 4, 1988, to December 30, 1988 .

Statistic

	

IBM

	

CUE

	

FWC

	

ΗΝΗ

	

NAV

	

T

Low Price 104.250 65.500 11.500 14.250 3.125 24.125
High Price 129.500 108.250 17.250 18.500 7.875 30.375
Market Value ($Billions) t

	

69.815

	

2.167

	

0.479

	

0.219

	

0.998

	

28.990

% Trades at Prices:
> Midquote

	

43.81

	

43.19

	

37.13

	

22.53

	

40.80

	

32.37
= Midquote

	

12.66

	

18.67

	

23.58

	

26.28

	

18.11

	

25.92
< Midquote

	

43.53

	

38.14

	

39.29

	

51 .20

	

41.09

	

41 .71

Price Change, 7k
Mean :

	

-0.0010 0.0016 -0.0017 -0.0028 -0.0002 0.0001
SD :

	

0.7530

	

1.2353 0.6390 0.7492

	

0.6445

	

0.6540

Time Between Trades, ~t~
Mean :

	

27.21

	

203.52

	

296.54 1129 .37

	

58.36

	

31 .00
SD :

	

34.13

	

282.16

	

416.49 1497 .44

	

76.53

	

34.39

Bid/Ask Spread, ABk
Mean :

	

1.9470

	

3.2909

	

2.0830

	

2.4707

	

1.4616

	

1 .6564
SD :

	

1.4625

	

1 .6203

	

1.1682

	

0.8994

	

0.6713

	

0.7936

SP500 Futures Return, S&P500á 2
Mean :

	

-0.0000 -0.0004 -0 .0017 -0.0064 0.0001 -0.0001
SD :

	

0.0716

	

0.1387

	

0.1475

	

0.1963

	

0.1038

	

0.0765

Buy/Sell Indicator, IBSk 3
Mean :

	

0.0028 0.0505 -0.0216 -0.2867 -0.0028 -0.0933
SD:

	

0.9346 0.9005 0.8739 0.8095

	

0.9049 0.8556

Signed Transformed Volume4
Mean :

	

0.1059 0.3574 -0.0523 -1 .9543 0.0332 -0.4256
SD:

	

6.1474

	

5.6643

	

6.2798

	

6.0890

	

6.9705

	

7.5846

Medίan Trading Volume ($)

	

57,375 40,900

	

6,150

	

5,363

	

3,000

	

7,950

1 Computed at the beginning of the sample period.
2 Five-minute continuously compounded returns of the S&P 500 index futures price, for the

contract maturing in the closest month beyond the month in which transaction k occurred,
where the return corresponding to the kth transaction is computed with the futures price
recorded one minute before the nearest round minute prior to tk and the price recorded five
minutes before this .

s Takes the value 1 if the kth transaction price is greater than the average of the quoted bid and
ask prices at time tk, the value -1 if the kth transaction price is less than the average of the
quoted bid and ask prices at time tk, and 0 otherwise .

4 Box-Cox transformation of dollar volume multiplied by the buy/sell indicator, where the Box-
Cox parameter ~ is estimated jointly with the other ordered probit parameters via maximum
likelihood . The Box-Cox parameter ~ determines the degree of curvature that the transforma-
tion Tj, (•) exhibits in transforming dollar volume V~ before inclusion as an explanatory variable
in the ordered probit specification . If ~ = 1, the transformation T~( •) is linear, hence dollar
volume enters the ordered probit model linearly. If ~ = 0, the transformation is equivalent to
log( •) , hence the natural logarithm of dollar volume enters the ordered probit model . When
~ is between 0 and 1, the curvature of T~( •) is between logarithmic and linear .
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least five seconds prior to the trade), and classify it as a sell if the price is
lower. Should the price equal the mean of the prevailing bid/ask quote, we
classify the trade as an "indeterminate" trade . This method yields far fewer
indeterminate trades than classifying according to transactions at the bid or
at the ask .

Unfortunately, little is known about the relative merits of this method
of classification versus others such as the "tick test" (which classifies a trans-
action as a buy, a sell, or indeterminate if its price is greater than, less than,
or equal to the previous transaction's price, respectively), simply because it
is virtually impossible to obtain the data necessary to evaluate these alterna-
tives. The only study we have seen is by Robinson (1988, Chapter 4 .4.1, Table
19), in which he compared the tick test rule to the bid/ask mean rule for a
sample of 196 block trades initiated by two major Canadian life insurance
companies, and concluded that the bid/ask mean rule was considerably
more accurate .

From Table 10.1 we see that 13-26% of each stock's transactions are
indeterminate, and the remaining trades fall almost equally into the two
remaining categories. The one exception is the smallest stock, HNH, which
has more than twice as many sells as buys .

The means and standard deviations of other variables to be used in our
ordered probit analysis are also given in Table 10 .1. The precise definitions
of these variables will be given below in Section 10 .4, but briefly, Zk is the
price change between transactions k - 1 and k, ~tk is the time elapsed
between these trades, ABk is the bid/ask spread prevailing at transaction k,
SP500k is the return on the S&P 500 index futures price over the five-minute
period immediately preceding transaction k, IBSk is the buy/sell indicator
described above (1 for a buy, -1 for a sell, and 0 for an indeterminate
trade), and T~(Vk) is a transformation of the dollar volume of transaction
k, transformed according to the Box and Cox (1964) specification with
parameter ~ i which is estimated for each stock i by maximum likelihood
along with the other ordered probit parameters .

From Table 10.1 we see that for the larger stocks, trades tend to oc-
cur almost every minute on average . Of course, the smaller stocks trade
less frequently, with ΗΝΗ trading only once every 18 minutes on average .
The median dollar volume per trade also varies considerably, ranging from
$3,000 for relatively low-priced NAV to $57,375 for higher-priced IBM .

Finally, Figure 10 .2 contains histograms for the price change, time-
between-trade, and dollar volume variables for the six stocks. The his-
tograms of price changes are constructed so that the most extreme cells
also include observations beyond them, i .e ., the level of the histogram for
the -4 tick cell reflects all price changes of -4 ticks or less, and similarly
for the +4 ticks cell. Surprisingly, these price histograms are remarkably
symmetric across all stocks . Also, virtually all the mass in each histogram
is concentrated in five or seven cells-there are few absolute price changes
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of four ticks or more, which underscores the importance of discreteness in
transaction prices .

For both the time-between-trade and dollar volume variables, the largest
cell, i .e ., 1,500 seconds or $200,000, also includes all trades beyond it . As
expected, the histograms for these quantities vary greatly according to mar-
ket value and price level . For the larger stocks, the time between trades is
relatively short, hence most of the mass in those histograms is in the lower-
valued cells . But the histograms of smaller, less liquid stocks like HNH have
spikes in the largest-valued cell . Histograms for dollar volume are some-
times bimodal, as in the case of IBM, reflecting both round-lot trading at
100 shares ($10,000 on average for IBM's stock price during 1988) and some
very large trades, presumably by institutional investors .

10.4 The Empirical Specification

To estimate the parameters of the ordered probit model via maximum like-
lihood, we must first specify (i) the number of states m, (ü) the explanatory
variables Xk, and (iii) the parametrization of the variance ~k .

In choosing m, we must balance price resolution against the practical
constraint that too large an m will yield no observations in the extreme states
si and sm . For example, if we set m to 101 and define the states si and s~o~
symmetrically to be price changes of -50 ticks and +50 ticks respectively, we
would find no Zk's among our six stocks falling into these two states . Using
the histograms in Figure 10 .2 as a guide, we set m = 9 for the larger stocks,
implying extreme states of -4 ticks or less and ~-4 ticks or more . For the
two smaller stocks, FWC and ΗΝΗ, we set m = 5, implying extreme states
of -2 ticks or less and +2 ticks or more . Although the definition of states
need not be symmetric (state si can be -6 ticks or less, implying that state
s9 is +2 ticks or more), the symmetry of the histogram of price changes in
Figure 10.2 suggests a symmetric definition of the se's .

In selecting the explanatory variables Xk, we seek to capture several
aspects of transaction price changes . First, we would like to allow for clock-
time effects, since there is currently some dispute over whether trade-to-
trade prices are stable in transaction time versus clock time . Second, we
would like to account for the effects of the bid/ask spread on price changes,
since many transactions are merely movements from the bid price to the
ask price or vice versa. I~ for example, in a sequence of three trades the
first and third were buyer-initiated while the second was seller-initiated, the
sequence of transaction prices would exhibit reversals due solely to the
bid/ask "bounce." Third, we would like to measure how the conditional
distribution of price changes shifts in response to a trade of a given volume,
i .e ., the price impact per unit volume of trade . And fourth, we would like
to capture the effects of "systematic" or market-wide movements in prices
on the conditional distribution of an individual stock's price changes . To
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address these four issues, we first construct the following variables :

~ tk

	

= Time elapsed between transactions k - 1 and k, in seconds .

ABk_1

	

= Bid/ask spread prevailing at time tα_l, in ticks .

Zk_ t = Three lags [l = 1, 2, 3] of the dependent variable Zk . Recall
that for m = 9, price changes less then -4 ticks are set equal to
-4 ticks (state sl), and price changes greater than -F-4 ticks are
set equal to +4 ticks (state s9), and similarly form = 5 .

Uk_t = Three lags [1 = 1, 2, 3] of the dollar volume of the (k - 1)th
transaction, defined as the price of the (k- 1)th transaction (in
dollars, not ticks) times the number of shares traded (denomi-
nated in 100's of shares), hence dollar volume is denominated
in $100's of dollars. To reduce the influence of outliers, if the

share volume of a trade exceeds the 99 .5 percentile of the em-
pirical distribution of share volume for that stock, we set it equal
to the 99.5 percentile .

SPSOOk_t = Three lags [l = 1, 2, 3] of five-minute continuously-compoun-
ded returns of the Standard and Poor's 500 index futures price,
for the contract maturing in the closest month beyond the
month in which transaction k - l occurred, where the return is
computed with the futures price recorded one minute before
the nearest round minute prior to tk_1 and the price recorded
five minutes before this . More formally, we have :

SPSDOk_i - log(F(tk_ i - 60)/F(tk_I - 360)), (10 .4.1)

SP500k_2 - log(F(tk_ l - 360)/F(tk_I - 660)), (10 .4 .2)

SPSOOk_3 - log(F(tk_ 1 - 660)/F(tk_ 1 - 960)), (10.4.3)

where F(t- ) is the S&P 500 index futures price at time t - (mea-
sured in seconds) for the contract maturing the closest month
beyond the month of transaction k - l, and t- is the nearest
round minute prior to time t (for example, if t is 10 : 35 : 47,
then t- is 10 : 35 : 00) . g

This rather convoluted timing for computing SP500α_1 ensures that there is no temporal
overlap between price changes and the returns to the index futures price . In particular, we first
construct a minute-by-minute time series for futures prices by assigning to each round minute
the nearest futures transaction price occurring ajier that minute but before the next (hence if
the first futures transaction after 10 : 35 : 00 occurs at 10 : 35 : 15, the futures price assigned
to 10 : 35 : 00 is this one) . If no transaction occurs during this minute, the price prevailing
at the previous minute is assigned to the current minute . Then for the price change Z~, we
compute SP500k ~ using the futures price one minute before the nearest round minute prior
to tα_i, and the price five minutes before this (hence if tα_i is 10 : 36 : 45, we use the futures
price assigned to 10 : 35 : 00 and 10 : 30 : 00 to compute SP500~-~ )

BFor example, the 99 .5 percentile for IBM's share volume is 16,500 shares, hence all IBM
trades exceeding 16,500 shares are set equal to 16,500 shares . B~ definition, only one-half of
one percent of the 206,794 IBM trades (or 1,034 trades) were "censored" in this manner . We
chose not to discard these trades because omitting them could affect our estimates of the lag
structure, which is extremely sensitive to the sequence of trades . For the five remaining stocks,
the 99.5 percentiles for share volume are : CUE = 21,300, FWC = 31,700, HNH = 20,000, NAV
= 50,000, and T = 44,100 .
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IBSk_1 = Three lags (l = 1, 2, 3) of an indicator variable that takes the

value 1 if the (k-1)th transaction price is greater than the average
of the quoted bid and ask prices at time tk_i, the value -1 if the
(k - l)th transaction price is less than the average of the bid and
ask prices at time tk_i, and 0 otherwise, i .e .,

I ~ Pk-1 ~ 2 (Pk-i +Pk-1 ),

IBSk-~ =

	

0 ifPk-~ = 2 (Pki + Pk ~)>

	

(10.4 .4)

-I if Pk_d G 2 (Ýk ~ + hk_ j ) .

Whether the (k-1)th transaction price is closer to the ask price
or the bid price is one measure of whether the transaction was
buyer-initiated (IBSk_ = 1) or seller-initiated (IBSk_i = -1) .
If the transaction price is at the midpoint of the bid and ask
prices, the indicator is indeterminate (IBSk_ = 0) .

Our specification of Xkß is then given by the following expression :

Xkß = ßi ~ tk + N2 Zk-1 + ß3 Zk-2 + ß4 2k-3 + ß5 Sh500k-1 + ß6SP500k-2

+~7SPSOOk-3 + ßSIBSk_1 + ß9lBSk-2 + ß10IBSk-3

+ßl1 ~T~(Uk-1) ' IBSk-1~ + ßl2 ~T~(Uk-2) ' IBSk-2i

+ßl3 ~T~(Uk-3) ' IBSk_3} •

	

(10.4.5)

The variable ~ tk is included in Xk to allow for clock-time effects on the
conditional mean of Zk . If prices are stable in transaction time rather than
clock time, this coefficient should be zero . Lagged price changes are in-
cluded to account for serial dependencies, and lagged returns of the S&P
500 index futures price are included to account for market-wide effects on
price changes .

To measure the price impact of a trade per unit volume we include the
term T~(hk_ i ), dollar volume transformed according to the Box and Cox
(1964) specification T~( •) :

T~(x) - (~` - 1/~),

	

(10.4.6)

where ~ ~ [0, 1] is also a parameter to be estimated . The Box-Cox trans-
formation allows dollar volume to enter into the conditional mean nonlin-
earl~, a particularly important innovation since common intuition suggests
that price impact may exhibit economies of scale with respect to dollar vol-

ume, i.e., although total price impact is likely to increase with volume, the
marginal price impact probably does not . The Box-Cox transformation cap-
tures the linear specification (~ = 1) and concave specifications up to and
including the logarithmic function (~ = 0) . The estimated curvature of
this transformation will play an important role in the measurement of price
impact .



310

	

I0. An Ordered Probit Analysis of Transaction Stock Prices

The transformed dollar volume variable is interacted with IBSk_l, an
indicator of whether the trade was buyer-initiated (IBSk = 1), seller-initiated
(IBSk = -1), or indeterminate (IBSk = 0) . A positive ßßi would imply that
buffer-initiated trades tend to push prices up and seller-initiated trades tend
to drive prices down. Such a relation is predicted by several information-
based models of trading, e .g ., Easley and O'Hara (1987) . Moreover, the
magnitude of ß1i is the per-unit volume impact on the conditional mean
of Zk , which may be readily translated into the impact on the conditional
probabilities of observed price changes . The sign and magnitudes of ß~2
and X13 measure the persistence of price impact .

Finally, to complete our specification we must parametrize the condi-
tional variance ~k - yo -}- ~ ~~2 Wk. To allow for clock-time effects we in-
clude ~ tk, and since there is some evidence linking bid/ask spreads to the in-
formation content and volatility of price changes (see, for example, Glosten
(1987), Hasbrouck (1988, 1991a,b), and Petersen and Umlauf (1990)), we
also include the lagged spread ABk_i . Also, recall from Section 10 .2 .2 that
the parameters ~, ~, and y are unidentified without additional restrictions,
hence we make the identification assumption that yo = 1. Our variance
parametrization is then :

~k = 1 + y~ ~tk -f- y2ABk_~ .

	

(10.4.7)

In summary, our nine-state specification requires the estimation of 24 pa-
rameters: the partition boundaries ~~, . . . , ~8, the variance parameters yi
and y2, the coefficients of the explanatory variables ~~, . . . , ~~3> and the
Box-Cox parameter ~. The five-state specification requires the estimation
of only 20 parameters .

10 .5 The Maximum Likelihood Estimates

We compute the maximum likelihood estimators numerically using the al-
gorithm proposed by Berndt, Hall, Hall, and Hausman (1974), hereafter
BHHH. The advantage of ΒΗΗΗ over other search algorithms is its re-
liance on only first derivatives, an important computational consideration
for sample sizes such as ours .

The asymptotic covariance matrix of the parameter estimates was com-
puted as the negative inverse of the matrix of (numerically determined)
second derivatives of the log-likelihood function with respect to the param-
eters, evaluated at the maximum likelihood estimates. We used a tolerance
of 0.001 for the convergence criterion suggested by ΒΗΗΗ (the product
of the gradient and the direction vector) . To check the robustness of our
numerical search procedure, we used several different sets of starting val-
ues for each stock, and in all instances our algorithm converged to virtually
identical parameter estimates .
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All computations were performed in double precision in an ULTRIX
environment on a DEC 5000/200 workstation with 16 Mb of memory, using
our own FORTRAN implementation of the BHHH algorithm with analytical
first derivatives . As a rough guide to the computational demands of ordered
probit, note that the numerical estimation procedure for the stock with the
largest number of trades (IBM, with 206,794 trades) required only 2 hours
and 45 minutes of cpu time .

In Table 10.2a, we report the maximum likelihood estimates of the
ordered probit model for our six stocks . Entries in each of the columns
labeled with ticker symbols are the parameter estimates for that stock, and
to the immediate right of each parameter estimate is the corresponding
z-statistic, which is asymptotically distributed as a standard normal variate
under the null hypothesis that the coefficient is zero, i .e ., it is the parameter
estimate divided by its asymptotic standard error .

Table 10.2a shows that the partition boundaries are estimated with high
precision for all stocks . As expected, the z-statistics are much larger for
those stocks with many more observations . The parameters for ~k are also
statistically significant, hence homoskedasticity may be rejected at conven-
tional significance levels; larger bid/ask spreads and longer time intervals
increase the conditional volatility of the disturbance .

The conditional means of the Zk 's for all stocks are only marginally
affected by ~tk . Moreover, the x-statistics are minuscule, especially in light
of the large sample sizes. However, as mentioned above, ~t does enter
into the ~k expression significantly, hence clock time is important for the
conditional variances, but not for the conditional means of Zk . Note that
this does not necessarily imply the same for the conditional distribution of
the Zk's, which is nonlinearly related to the conditional distribution of the
Zk 's. For example, the conditional mean of the Zk's may well depend on
the conditional variance of the Zk 's, so that clock time can still affect the
conditional mean of observed price changes even though it does not affect
the conditional mean of Zk .

More striking is the significance and sign of the lagged price change

coefficients ß2, ~3, and ~4, which are negative for all stocks, implying a ten-
dency towards price reversals. For example, if the past three price changes

were each one tick, the conditional mean of Zk changes by ß2 + ß3 + ~4 •

However, if the sequence of price changes was 1/-1/1, then the effect on

the conditional mean is ~2 - ~3 + ß4, a quantity closer to zero for each of
the security's parameter estimates . 9

9 In an earlier specification, in place of lagged price changes we included separate indicator
variables for eight of the nine states of each lagged price change . But because the coefficients
of the indicator variables increased monotonically from the -4 state to the +4 state (state 0
was omitted) in almost exact proportion to the tick change, we chose the more parsimonious
specification of including the actual lagged price change .
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Table 10.2a. Maximum likelihood estimates ~f the ordered probit modelfor tr~nsacti~n price changes ofInternational Business Machines Corporation

(IBM - 206, 794 trades), Quantum Chemical Corporation (CZIE - 26, 927 trades), Foster YVheeler Corporation (FWC - 18,199 trades), Handy and
Harman Company (HNH - 3,174 trades), Navistar International Corporation (NAV - 96,127 trades), and American Telephone and Telegraph
Company (T -180, 726 trades), for the period from fanuary 4, 1988, to December 30, 1988. Each z-statistic is asymptotically standard normal under

the null hypothesis that the corresponding coefficient is zero .

Parameter

	

IBM

	

z

	

CUE

	

z

	

EWCb

	

z

	

HNH"

	

NAV

	

z

	

T

	

z

Partition

	

~
boundariesa

α1 -4.670 -145 .65 -6.213 -18 .92 -4.378 -25.24 -4.456 -5 .98 -7.263 -39.23 -8.073 -56.95 ~
α2 -4.157 -157.75 -5.447 -18 .99 -1.712 -25.96 -1 .801 -5.92 -7.010 -36.53 -7.270 -62.40 Q
α3

	

-3.109 -171 .59 -2.795 -19.14

	

1.679

	

26.32

	

1 .923

	

5.97 -6.251 -37.22 -5.472 -63.43

	

~
α4

	

-1.344 -155 .47 -1 .764 -18.95

	

4.334

	

25.26

	

4.477

	

5.85 -1 .972 -34.59 -1.850 -61 .41

	

Ά.
α5

	

1.326

	

154.91

	

1 .605

	

18.81

	

-

	

1 .938

	

34.66

	

1.977

	

62.82

	

ό
α6

	

3.126

	

167.81

	

2.774

	

19.11

	

-

	

6.301

	

36.36

	

5.378

	

62.43

	

°'
αη

	

4.205

	

152.17

	

5.502

	

19.10

	

7.742

	

31.63

	

7.294

	

57.63

	

~
α~

	

4.732

	

138.75

	

6.150

	

18.94

	

8.638

	

30.26

	

8.156

	

56.23

	

ρ

yι : Δt/100

	

0.399

	

15.57

	

0.499

	

11 .62

	

0.275

	

11 .26

	

0.187

	

4.07

	

0.428

	

10.01

	

0.387

	

8.89
y2 : ΑΒ 1

	

0.515

	

71 .08

	

1 .110

	

15.39

	

0.723

	

14.54

	

1 .109

	

4.48

	

0.869

	

19.93

	

0.868

	

38.16

	

~°,

βι : Δt/100

	

-0.115

	

-11.42 -0.014

	

-2.14

	

0.013

	

-3.50 -0.010 -2.69 -0.032

	

-3.82 -0.127

	

-9.51

	

Ρ

β2 : Ζ_ 1 -1.012 -135.57 -0.333 -13.46 -1.325 -24.49 -0.740 -5.18 -2.609 -36.32 -2.346 -62 .74 Q
β 3 : Ζ_ 2

	

-0.532

	

-85.00 -0.000

	

-0.03 -0.638 -16.45 -0.406 -4.06 -1.521 -34.13 -1.412 -56.52

	

ο
β4: Ζ 3

	

-0.211

	

-47.15 -0.020

	

-1 .42 -0.223

	

-9.23 -0.116 -1 .84 -0.536 -31 .63 -0.501 -47.91

	

~
β ς : SP500_ ι

	

1 .120

	

54.22

	

2.292

	

13.54

	

1.359

	

13.49

	

0.472

	

1 .36

	

0.419

	

8.05

	

0.625

	

17.12

	

g
β 6 : SP500_2

	

-0.257

	

-12.06

	

1 .373

	

9.61

	

0.302

	

2.93

	

0.448

	

1 .20

	

0.150

	

2.87

	

0.177

	

4.96

	

~
β~: SP500 3

	

0.006

	

0.26

	

0.677

	

5.15

	

0.204

	

L97

	

0.388

	

1 .13

	

0.159

	

3.02

	

0.141

	

3.93

(continued)



0Table 10.2a . (continued)

	

~„

Parameter

	

IBM

	

z

	

CUE

	

z

	

FWCb

	

z

	

HNH"

	

z

	

NAV

	

z

	

T

	

z

~B:IBS_~

	

-1 .137 -63.64 -1.915 -15 .36 -0.791 -7.81 -0.803 -2.89 -0.501 -17.38 -0.740 -23.01

	

Q
~9:IBS_ 2

	

-0.369 -21 .55 -0.279 -3.37 -0.184 -3.66 -0.184 -0.75 -0.370 -15.38 -0.340 -18.11

~~o~ IBS_ 3

	

-0.174 -10.29

	

0.079

	

0.98 -0.177 -3.64 -0.022 -0.17 -0.301 -15.37 -0.299 -19.78

	

~

~~~ ~ T~ ( V_ ι ) IBS_ i `

	

0.122

	

47.37

	

0.217

	

12.97

	

0.050

	

1 .80

	

0.038

	

0.55

	

0.013

	

2.56

	

0.032

	

4.51

	

~
. ~~ V IBßßs •

	

( 2) S_2

	

0.047

	

18.57

	

0.036

	

2.83

	

0.015

	

1 .54

	

0.036

	

0.55

	

0.011

	

2.54

	

0.014

	

4.22

	

~.;
~~3~ T~(V_ 3 ) IBS 3

	

0.019

	

7.70

	

0.007

	

0.59

	

0.015

	

1 .56 -0.006 -0.34

	

0.005

	

2.09

	

0.005

	

3.02
0

~

	

0

	

-

	

0

	

-

	

0.165

	

1 .58

	

0.191

	

0.55

	

0.277

	

3.50

	

0.182

	

5.00

	

°~,
M

aAccording to the ordered probit model, if the "virtual" price change Zk is less than ~~, then the observed price change is -4 ticks or less ; if Zk* is ~.
between ~i and ~Z, then the observed price change is -3 ticks; and so on. Q
b The ordered probit specification for FWC and HNH contains only five states (-2 ticks or less, -1, 0, +1, ~-2 ticks or more), hence only four ms's were 4
required .

`Box-Cox transformation of lagged dollar volume multiplied by the lagged buy/sell indicator, where the Box-Cox parameter ~ is estimated jointly with
the other ordered probit parameters via maximum likelihood . The Box-Cox parameter ~ determines the degree of curvature that the transformation
T~( •) exhibits in transforming dollar volume Uk before inclusion as an explanatory variable in the ordered probit specification . If ~ = 1, the
transformation T~ ( •) is linear, hence dollar volume enters the ordered probit model linearly . If ~ = 0, the transformation is equivalent to log( •) , hence
the natural logarithm of dollar volume enters the ordered probit model . When ~ is between 0 and 1, the curvature of T~ ( •) is between logarithmic
and linear.

c~
~-+
C.ιο



Table 10.2b . Cross-autocorrelation coefficients v~, j = 1, . . . , 12, ofgeneralized residuals {~ k } with lagged generalized fitted price changes Zk_~
from the ordered probit estimation for transaction price changes ofInternational Business Machines Corporation (IBM- 206, 794 trades), Quantum
Chemical Corporation (CUE - 26, 927 trades), Foster Wheeler Corporation (FWC -18,199 trades), Handy and Harman Company (HNH- 3,174
trades), Navistar International Corporation (NAV- 96,127 trades), and American Telephone and Telegraph Company (T-180, 726 trades), for

the period from fanuary 4, 1988 to December 30, 1988 .a

υο

V71

	

V12
ti

ΙΒΜ

	

-0.005

	

0.002

	

0.005 -0.043 -0.008

	

0.001 -0 .001

	

0.001

	

0.000 -0.001 -0.005

	

0.000

	

~
CUE

	

-0.008

	

0.001 -0.006

	

0.010

	

0.013

	

0.003

	

0.006

	

0.008 -0.002

	

0.004 -0.004

	

0.000

	

Υ
FWC

	

-0.006

	

0.000

	

0.007 -0.032 -0 .001 -0.007 -0.004 -0.003 -0.003 -0.003

	

0.013 -0.004

	

~
ΗΝΗ -0.012 -0.007

	

0.007 -0.027 -0 .009

	

0.012

	

0.019 -0.001

	

0.009

	

0.030 -0.018

	

0.018
NAV

	

0.005

	

0.014

	

0.020 -0.088 -0 .011 -0.014 -0 .016 -0.011 -0.010 -0.013 -0.009 -0.014

SYOCIC

	

V1

	

V2

	

V3

	

Vg

	

Uς

	

V~

	

Vg U10

T

	

0.002

	

0.013

	

0.015 -0.080 -0.005 -0.011 -0 .006 -0.007 -0.007 -0.006 -0.001 -0.006

	

, ro
ó

aIf the ordered probit model is correctly specified, these cross-autocorrelations should be close to zero .
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Table 10.2c. Score test statistics ~~, j = 1, . . . , 12, where ~~ ^~ ~i under the null hypothesis of no serial correlation in the ordered probit disturbances

	

~^
{~k}, using the generalized residuals {~ k } from ordemd probit estimation for transaction price changes of International Business Machines Corporation
(IBM - 206, 794 trades), Quantum Chemical Corporation (CUE - 26, 927 trades), Foster Wheeler Corporation (FWC - 18,199 trades), Handy and

	

~e
Harman Company (HNH - 3,174 trades), Navistar International Corporation (NAV - 96,127 trades), and American Telephone and Telegraph

	

Q
Company (T - 180, 726 trades), fir the period from fanuary 4, 1988, to December 30, 1988 .a

S1

	

S2

	

S8

	

S4

	

S5

	

~6

	

S7

	

S8

	

S9

	

S10

	

S11

	

S12

Stock (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
~o

IBM

	

3.29

	

0.94

	

3.40

	

313.2

	

9.71

	

0.19

	

0.28

	

0.25

	

0.00

	

0.21

	

3.76

	

0.03

	

ó
(0.07)

	

(0.33)

	

(0.07)

	

(0.00)

	

(0.00)

	

(0.66)

	

(0.60)

	

(0.62)

	

(1.00)

	

(0.65)

	

(0.05)

	

(0.86)

	

~
M

CUE

	

1.25

	

0.01

	

0.72

	

2.39

	

4.01

	

0.24

	

0.94

	

1.54

	

0.11

	

0.41

	

0.32

	

0.00
(0.26)

	

(0.92)

	

(0.40)

	

(0.12)

	

(0.05)

	

(0.62)

	

(0.33)

	

(0.21)

	

(0.74)

	

(0.52)

	

(0.57)

	

(1 .00)

FWC

	

0.58

	

0.00

	

0.82

	

17.42

	

0.02

	

0.75

	

0.21

	

0.14

	

0.15

	

0.16

	

3.01

	

0.27
(0.45)

	

(1 .00)

	

(0.37)

	

(0.00)

	

(0.89)

	

(0.39)

	

(0.65)

	

(0.71)

	

(0.70)

	

(0.69)

	

(0.08)

	

(0.60)

ΗΝΗ

	

0.35

	

0.13

	

0.15

	

2.10

	

0.22

	

0.40

	

1.06

	

0.00

	

0.24

	

2.60

	

0.96

	

1 .00
(0.55)

	

(0.72)

	

(0.70)

	

(0.15)

	

(0.64)

	

(0.53)

	

(0.30)

	

(1 .00)

	

(0.62)

	

(0.11)

	

(0.33)

	

(0.32)

NAV

	

2.37

	

17.50

	

38.00

	

684.06

	

11.76

	

18.20

	

22.38

	

11 .72

	

9.95

	

14.61

	

7.14

	

17.02
(0 .12)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.01)

	

(0.00)

Τ

	

0.94

	

30.12

	

40.42

	

1003.69

	

3.02

	

17.87

	

4.96

	

6.22

	

7.29

	

5.52

	

0.04

	

4.89
(0.33)

	

(0.00)

	

(0.00)

	

(0.00)

	

(0.08)

	

(0.00)

	

(0.03)

	

(0.01)

	

(0.01)

	

(0.02)

	

(0.84)

	

(0.03)

aIf the ordered probit model is correctly specified, these test statistics should follow a ~i statistic which falls in the interval [0 .00, 3 .84] with 95%
probability.

Cι~
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10. An Ordered Probit Analysis of Transaction Stock Prices

Note that these coefficients measure reversal tendencies beyond that
induced by the presence of a constant bid/ask spread as in Roll (1984a) . The
effect of this "bid/ask bounce" on the conditional mean should be captured
by the indicator variables IBSk_ ι , IBSk_2, and IBS k_3 . In the absence of all
other information (such as market movements, past price changes, etc .),
these variables pick up any price effects that buys and sells might have on
the conditional mean. As expected, the estimated coefficients are generally
negative, indicating the presence of reversals due to movements from bid to
ask or ask to bid prices . In Section 10.6.1 we shall compare their magnitudes
explicitly, and conclude that the conditional mean of price changes is fiath-
dependent with respect to past price changes .

The lagged S&P 500 returns are also significant, but have a more persis-
tent effect on some securities. For example, the coefficient for the first lag
of the S&P 500 is large and significant for IBM, but the coefficient for the
third is small and insignificant . However, for the less actively traded stocks
such as CUE, all three coefficients are significant and are about the same
order of magnitude . As a measure of how quickly market-wide information
is impounded into prices, these coefficients confirm the common intuition
that smaller stocks react more slowly than larger stocks, which ~s consistent
with the lead/lag effects uncovered by Lo and MacKinlay (1990a) .

10.5.1 Diagnostics

A common diagnostic for the specification of an ordinary least squares re-
gression is to examine the properties of the residuals . I~ for example, a time
series regression is well-specified, the residuals should approximate white
noise and exhibit little serial correlation . In the case of ordered probit, we
cannot calculate the residuals directly since we cannot observe the latent
dependent variable Zk and therefore cannot compute Zk - Xk,B. However,
we do have an estimate of the conditional distribution of Zk , conditioned
on the Xk's, based on the ordered probit specification and the maximum
likelihood parameter estimates . From this we can obtain an estimate of the
conditional distribution of the Gk's, from which we can construct generalized
residuals ~k along the lines suggested by Gourieroux, Monfort, and Trognon
(1985)

Ek = E~Ek ~ Zk> Xk, Wk, ~ml~,

	

(10.5.1)

where ~m~ is the maximum likelihood estimator of the unknown parameter
vector containing á, y, ,B, and ~. In the case of ordered probit, if Zk is in
the jth state, i .e ., Zk = sj, then the generalized residual ~k may be expressed
explicitly using the moments of the truncated normal distribution as

Fk = ELEk I Zk = sj, Xk, Wk, ~ml

_ ~k . ~(c~)-~(c2)

	

(10.5 .2)
ß(c2) - ~(~y)'
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ει = ~k («j-ι - Χάβ)

1

	

,~~ε
~2 = - (aj - ỲkN) ,~k

Uk = J1 + Υ1 0 tk + Υ2 t1Bk_ 1,

(10 .5 .3)

(10.5.4)

(10.5.5)

where ~( •) ~s the standard normal probability density function and for no-
tational convenience, we define ~o = -oo and ~„~ _ +oo. Gourieroux,
Monfort, and Trognon (1985) show that these generalized residuals may be
used to test for misspecification in a variety of ways . However, some care is
required in performing such tests. For example, although a natural statistic
to calculate ~s the first-order autocorrelation of the ~k's, Gourieroux et al . ob-
serve that the theoretical autocorrelation of the generalized residuals does
not in general equal the theoretical autocorrelation of the Gk's . Moreover, if
the source of serial correlation is an omitted lagged endogenous variable (i~
for example, we included too few lags of Zk in Xk), then further refinements
of the usual specification tests are necessary .

Gourieroux et al . derive valid tests for serial correlation from lagged
endogenous variables using the score statistic, essentially the derivative of the
likelihood function with respect to an autocorrelation parameter, evaluated
at the maximum likelihood estimates under the null hypothesis of no serial
correlation . More specifically, consider the following model for our Zk

Ζk = φ2α-ι + Χkβ + ~k, ~Ψ~ < 1 .

	

(10.5 .6)

In this case, the score statistic ~l is the derivative of the likelihood function
with respect to ~ evaluated at the maximum likelihood estimates . Under
the null hypothesis that ~ = 0, it simplifies to the following expression :

where

Zk = F~Zk ~ Zk, Xk, Wk> ~ml~

	

(10.5.8)

= Xkß + ~k .

	

(10.5.9)

When ~ = 0, ~~ is asymptotically distributed as a ~i variate . Therefore, using
~l we can test for the presence of autocorrelation induced by the omitted
variable Zk 1 . More generally, we can test the higher-order specification :

η

	

2 η
ε

	

2

	

2
S1 =

	

Ζk-1~k ~

	

Ζk-1~k
k=2

	

k=2
(10.5.7)

Ζk = φΖkj + ỲkY + Εk, ΙφΙ < 1,

	

(10.5 .10)
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by using the score statistic ~j,

2

ξj = ~ Σ Ζk_j~k~ Σ Ζk jέk,

	

(10.5 .11)
k=j+1

	

k=j+1

which is also asymptotically ~i under the null hypothesis that ~ = 0 .
For further intuition, we can compute the sample correlation vj of the

generalized residual ~k with the lagged generalized fitted values Zk_ j . Under
the null hypothesis of no serial correlation in the Gk's, the theoretical value
of this correlation is zero, hence the sample correlation will provide one
measure of the economic impact of misspecification . These are reported in
Table 10.2b for our sample of six stocks, and they are all quite small, ranging
from -0.088 to 0 .030 .

Finally, Table 10 .2c reports the score statistics ~j, j = 1, . . . , 12. Since we
have included three lags of Zk in our specification of X k , it is no surprise that
none of the score statistics for j = 1, 2, 3 are statistically significant at the
5% level . However, at lag 4, the score statistics for all stocks except CUE and
HNH are significant, indicating the presence of some serial dependence
not accounted for by our specification . But recall that we have very large
sample sizes so that virtually any point null hypothesis will be rejected . With
this ~n mind, the score statistics seem to indicate a reasonably good fit for all
but one stock, NAV, whose score statistic is significant at every lag, suggest-
ing the need for respecification . Turning back to the cross-autocorrelations
reported in Table 10.2b, we see that NAV's residual ~k has a -0.088 corre-
lation with Zk_4, the largest in Table 10 .2b in absolute value. This suggests
that adding Zk_4 as a repressor mighCimprove the specification for NAV

There are a number of other specification tests that can check the ro-
bustness of the ordered probit specification, but they should be performed
with an eye towards particular applications . For example, when studying the
impact of information variables on volatility, a more pressing concern would
be the specification of the conditional variance ~k . If some of the parame-
ters have important economic interpretations, their stability can be checked
by simple likelihood ratio tests on subsamples of the data. If forecasting
price changes is of interest, an R2-like measure can readily be constructed
to measure how much variability can be explained by the predictors . The
ordered probit model is flexible enough to accommodate virtually any spec-
ification test designed for simple regression models, but has many obvious
advantages over OLS as we shall see below .

10.5.2 Endogeneity of ~ tk and IBSk

Our inferences in the preceding sections are based on the implicit assump-
tion that the explanatory variables Xk are all exogenous or predetermined
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with respect to the dependent variable Zk . However, the variable E tk is
contemporaneous to Zk and deserves further discussion .

Recall that Zk is the price change between trades at time tk_1 and time

tk . Since tk is simply tk - tk_1, it may well be that % and 4 are determined
simultaneously, in which case our parameter estimates are generally incon-
sistent . In fact, there are several plausible arguments for the endogeneity of
ttk (see, for example, Admati and Pfleiderer (1988), 1989) and Easley and
O'Hara (1992)) . One such argument turns on the tendency of floor brokers
to break up large trades into smaller ones, and time the executions carefully
during the course of the day or several days . By "working" the order, the floor
broker can minimize the price impact of his trades and obtain more favor-
able execution prices for his clients . But by selecting the times between his
trades based on current market conditions, which include information also
affecting price changes, the floor broker is creating endogenous trade times .

However, any given sequence of trades in our dataset does not neces-
sarily correspond to consecutive transactions of any single individual (other
than the specialist of course), but is the result of many buyers and sellers
interacting with the specialist. For example, even if a floor broker were work-
ing a large order, in between his orders might be purchases and sales from
other floor brokers, market orders, and triggered limit orders . Therefore,
the ~tk's also reflect these trades, which are not necessarily information-
motivated .

Another more intriguing reason that LX tk may be exogenous is that floor
brokers have an economic incentive to minimize the correlation between
Atk and virtually all other exogenous and predetermined variables. To see
this, suppose the floor broker timed his trades in response to some ex-
ogenous variable also affecting price changes, call it "weather ." Suppose
that price changes tend to be positive in good weather and negative in bad
weather. Knowing this, the floor broker will wait until bad weather prevails
before buying, hence trade times and price changes are simultaneously de-
termined by weather. However, if other traders are also aware of these
relations, they can garner information about the floor broker's intent by
watching his trades and by recording the weather, and trade against him
successfully. To prevent this, the floor broker must trade to deliberately
minimize the correlation between his trade times and the weather. There-
fore, the floor broker has an economic incentive to reduce simultaneous
equations bias! Moreover, this argument applies to any other economic
variable that can be used to jointly forecast trade times and price changes .
For these two reasons, we assume that i tk is exogenous .

We have also explored some adjustments for the endogeneity of Ztk

along the lines of Hausman (1978) and Newey (1985), and our prelim-
inary estimates show that although exogeneity of ~tk may be rejected at
conventional significance levels (recall our sample sizes), the estimates do
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not change much once endogeneity is accounted for by an instrumental
variables estimation procedure .

There are, however, other contemporaneous variables that we would
like to include as regressors which cannot be deemed exogenous (see the
discussion of IBSk in Section 10.6 .2 below), and for these we must wait until
the appropriate econometric tools become available .

10.6 Applications

In applying the ordered probit model to particular issues of the market
microstructure, we must first consider how to interpret its parameter esti-
mates from an economic perspective. Since ordered probit may be viewed
as a generalization of a linear regression model to situations with a discrete
dependent variable, interpreting its parameter estimates is much like in-
terpreting coefficients of a linear regression : the particular interpretation
depends critically on the underlying economic motivation for including and
excluding the specific regressors .

In a very few instances, theoretical paradigms might yield testable impli-
cations in the form of linear regression equations, e .g., the CAPM's security
market line . In most cases, however, linear regression is used to capture and
summarize empirical relations in the data that have not yet been derived
from economic first principles . In much the same way, ordered probit may
be interpreted as a means of capturing and summarizing relations among
price changes and other economic variables such as volume . Such relations
have been derived from first principles only in the most simplistic and styl-
ized of contexts, under very specific and, therefore, often counterfactual
assumptions about agents' preferences, information sets, alternative invest-
ment possibilities, sources of uncertainty and their parametric form (usu-
ally Gaussian), and the timing and allowable volume and type of trades .'ß

Although such models do yield valuable insights about the economics of
the market microstructure, they are too easily rejected by the data because
of the many restrictive assumptions needed to obtain readily interpretable
closed-form results.

Nevertheless, the broader implications of such models can still be
"tested" by checking for simple relations among economic quantities, as
we illustrate in Section 10.6 .1 . However, some care must be taken in inter-
preting such results, as in the case of a simple linear regression of prices
on quantities which cannot be interpreted as an estimated demand curve
without imposing additional economic structure .

toJust a few recent examples of this growing literature are Admati and Pfleiderer (1988),
1989), Amihud and Mendelson (1980), Easley and O'Hara (1987), Garman (1976), Glosten
and Milgrom (1985), Grundy and McNichols (1989), Ho and Stoll (1980, 1981), Karpoff
(1986), Kyle (1985), Stoll (1989), and Wang (1994) .
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In particular, although the ordered probit model can shed light on
how price changes respond to specific economic variables, it cannot give us
economic insights beyond whatever structure we choose to impose a priori.

For example, since we have placed no specific theoretical structure on how
prices are formed, our ordered probit estimates cannot yield sharp implica-
tions for the impact of floor brokers "working" an order (executing a large
order in smaller bundles to obtain the best average price) . The ordered pro-
bit estimates will reflect the combined actions and interactions of these floor
brokers, the specialists, and individual and institutional investors, all trad-
ing with and against each other. Unless we are estimating a fully articulated
model of economic equilibrium that contains these kinds of market par-
ticipants, we cannot separate their individual impact in determining price
changes. For example, without additional structure we cannot answer the
question: What is the price impact of an order that is not "worked"?

However, if we were able to identify those large trades that did ben-
efit from the services of a floor broker, we could certainly compare and
contrast their empirical price dynamics with those of "unworked" trades us-
ing the ordered probit model . Such comparisons might provide additional
guidelines and restrictions for developing new theories of the market mi-
crostructure . Interpreted in this way, the ordered probit model can be a
valuable tool for uncovering empirical relations even in the absence of a
highly parametrized theory of the market microstructure . To illustrate this
aspect of ordered probit, in the following section we consider three specific
applications of the parameter estimates of Section 10 .5: a test for order-flow
dependence in price changes, a measure of price impact, and a comparison
of ordered probit to ordinary least squares .

10.6.1 Order-Flow Dependence

Several recent theoretical papers in the market microstructure literature
have shown the importance of information in determining relations be-
tween prices and trade size. For example, Easley and O'Hara (1987) ob-
serve that because informed traders prefer to trade larger amounts than
uninformed liquidity traders, the size of a trade contains information about
who the trader is and, consequently, also contains information about the
traders' private information . As a result, prices in their model do not sat-
isfy the Markov property, since the conditional distribution of next period's
price depends on the entire history of past prices, i .e ., on the order flow.
That is, the sequence of price changes of 1/-1/1 will have a different ef-
fect on the conditional mean than the sequence -1/1/1, even though both
sequences yield the same total price change over the three trades .

One simple implication of such order-flow dependence is that the coef-
ficients of the three lags of Zk's are not identical. If they are, then only the
sum of the most recent three price changes matters in determining the con-
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ditional mean, and not the order in which those price changes occurred .
Therefore, if we denote by ~~ the vector of coefficients [~2 ~~3 ~4 ]' of the
lagged price changes, the null hypothesis H of order-flow independence is
simply :

H: ~2 = X83 = ~4

This may be recast as a linear hypothesis for ~~, namely A~~ = 0, where

_ 1

	

1

	

0
á
- 0

	

1 -1

	

(10.6.1)

Then under H, we obtain the following test statistic :

~pA'(AVpA') i AΧμ ^' X2,

	

(10.6 .2)

where h~ is the estimated asymptotic covariance matrix of ~~ . The val-
ues of these test statistics for the six stocks are : IBM = 11,462.43, CUE _
152.05, FWC = 446.01, HNH = 18 .62, NAV = 1,184 .48, and T = 3,428.92 .
The null hypothesis of order-flow independence may be rejected at all the
usual levels of significance for all six stocks. These findings support Easley
and O'Hara's observation that information-based trading can lead to path-
dependent price changes, so that the order flow (and the entire history of
other variables) may affect the conditional distribution of the next price
change .

10.6.2 Measuring Price Impact Per Unit Volume of Trade

By price impact we mean the effect of a current trade of a given size on
the conditional distribution of the subsequent price change . As such, the
coefficients of the variables T~(Vk_~) Ε IBSk_~, j = 1, 2, 3, measure the price
impact of trades per unit of transformed dollar volume . More precisely,
recall that our definition of the volume variable is the Box-Cox transforma-
tion of dollar volume divided by 100, hence the coefficient ~~~ for stock i
~s the contribution to the conditional mean Xk~ that results from a trade
of $100 Ε (1 + ~ i )~~~ ; (since TΧ ((1 + ~ i)~~~~) = 1) . Therefore, the impact of
a trade of size $M at time k - 1 on XkΧ is simply ~~~ T~(M/100) . Now the
estimated ~~~'s in Table 10.2a are .generally positive and significant, with the
most recent trade having the largest impact . But this is not the impact we
seek, since XkΧ is the conditional mean of the unobserved variable Zk and
not of the observed price change Zk . In particular, since Xk~ is scaled by
~k in (10 .2.10), it is difficult to make meaningful comparisons of the ~~~ s
across stocks .

To obtain a measure of a trade's price impact that we can compare
across stocks, we must translate the impact on XkΧ into an impact on the
conditional distribution of the Zk's, conditioned on the trade size and other
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quantities . Since we have already established that the conditional distri-
bution of price changes is order-flow-dependent, we must condition on a
specific sequence of past price changes and trade sizes . We do this by sub-
stituting our parameter estimates into (10 .2.10), choosing particular values
for the explanatory variables Xk, and computing the probabilities explicitly .
Specifically, for each stock i we set ~tk and ABk_i to their sample means for
that stock and set the remaining regressors to the following values :

Vk-2 = ΧΝo ' median dollar volume for stock i,

Vk-3 = εσΖ ' median dollar volume for stock i,

SPSOOk_ ε = 0.001, SPSOOk_2 = 0.001, SPSOOk_3 = 0.001,

IBSk_ ε = 1,

	

IBSk_2 = 1,

	

IBSk-3 = 1

Specifying values for these variables is equivalent to specifying the market
conditions under which price impact is to be measured . These particular
values correspond to a scenario in which the most recent three trades are
buys, where the sizes of the two earlier trades are equal to the stock's median
dollar volume, and where the market has been rising during the past 15
minutes. We then evaluate the probabilities in (10 .2.10) for different values
Of Vk-1, Zk-1, Zk -2, and Zk-3 Ε

For brevity, we focus only on the means of these conditional distri-
butions, which we report for the six stocks in Table 10 .3. The entries in
the upper panel of Table 10.3 are computed under the assumption that

Zk-~ = Zk-2 = Zk-s = +1, whereas those in the lower panel are computed
under the assumption that Zk_ i = Zk_2 = Zk_3 = 0. The first entry in the
"IBM" column of Table 10 .3's upper panel, -1.315, is the expected price
change in ticks of the next transaction of IBM following a $5,000 buy. The
seemingly counterintuitive sign of this conditional mean is the result of the
"bid/ask bounce"; since the past three trades were assumed to be buys, the
parameter estimates reflect the empirical fact that the next transaction can
be a sell, in which case the transaction price change will often be negative
since the price will go from ask to bid . To account for this effect, we would
need to include a contemporaneous buy/sell indicator, IBSk, in Xk and condi-
tion on this variable as well . But such a variable is clearly endogenous to Zk
and our parameter estimates would suffer from the familiar simultaneous-
equations biases .

In fact, including the contemporaneous buy/sell indicator IBSk and
contemporaneous transformed volume T~ ( Uk) would yield a more natural
measure of price impact, since such a specification, when consistently esti-
mated, can be used to quantify the expected total cost of transacting a given
volume. Unfortunately, there are few circumstances in which the contempo-
raneous buy/sell indicator IBSk may be considered exogenous, since simple
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Table 10.3. Price impact of trades as measured by the change in conditional mean of Z k ,
~r ~E[Zk ], when trade sizes are increased incrementally above the base case of a $5,000
trade. These changes are computed from the ordered Probit probabilities for International
Business Machines Corporation (IBM- 206, 794 trades), Quantum Chemical Corporation
(CITE - 26, 927 trades), Foster Wheeler Corporation (FWC - 18,199 trades), Handy and
Harman Company (HNH - 3,174 trades), Navistar International Corporation (NAV -
96,127trades), and American Telephone and Telegraph Company (T - 180, 726 trades),
for the periodfromfanuary 4, 1988, to December 30, 1988 . Price impact measures expressed
in percent are percentages of the average of the high and low prices of each security .

$Volume IBM CUE FWC ΑιΑ NAV

	

T

Increasing Price Sequence, (1/1/1) :

Price Imf~~ct in Ticks

E[Zk] :

	

5,000 -1.315 -0.629 -0.956 -0.621 -1 .670 -1 .604

~E[Zk] : 10,000 0.060 0.072 0.025 0.019 0.017 0.022
~E[lk] : 50,000 0.193 0.239 0.096 0.074 0.070 0.082
~E[Zk] : 100,000 0 .248 0.310 0.133 0.103 0.100 0.113
~E[Zk] : 250,000 0 .319 0.403 0.189 0.148 0.148 0.159
~E[Zk] :

	

500,000

	

0.371

	

0.473

	

0.236

	

0.188

	

0.191

	

0.197

PΊce Impact in Percent

E[Zk] :

	

5,000 -0.141 -0.090 -0.831 -0.474 -3.79fi -0.736

~E[Zk] : 10,000 0.006 0.010 0.022 0.015 0.038 0.010
~E[Zk] : 50,000 0.021 0.034 0.084 0.057 0.158 0.038
~E[Zk] : 100,000 0.027 0.045 0.116 0.079 0.227 0.052
~E[Zk] : 250,000 0.034 0.058 0.164 0.113 0.336 0.073
~E[Zk] :

	

500,000

	

0.040

	

0.068

	

0.205

	

0.143

	

0.434

	

0.90

Constant Price Sequence, (0/0/0) :

Pace Impact in Ticks

E[Zk ] :

	

5,000 -0.328 -0.460 -0.214 -0.230 -0.235 -0.294

~E[Zk] : 10,000 0.037 0.071 0 .021 0.018 0.007 0.013
~E[Zk] : 50,000 0.120 0.236 0.080 0.070 0.031 0.050
~E[Zk] : 100,000 0 .155 0.306 0.111 0.098 0.044 0.069
~E[Zk] : 250,000 0.200 0.398 0.156 0.140 0.066 0.098
~E[Zk] :

	

500,000

	

0.234

	

0.468

	

0.195

	

0.177

	

0.087

	

0.123

Price Impact in Percent

E [ Zk ] :

	

5,000 -0.035 -0.066 -0.186 -0.175 -0.534 -0 .135

~E[Zk] : 10,000 0.004 0.010 0.018 0.014 0.017 0.006
~E[Zk] : 50,000 0.013 0.034 0.070 0.053 0.070 0.23
~E[Zk] : 100,000 0.017 0.044 0.096 0.074 0.100 0.032
~E[Zk] : 250,000 0 .021 0.057 0.136 0.107 0.151 ~A45
~E[Zk] :

	

500,000

	

0.025

	

0.067

	

0.169

	

0.135

	

0.197

	

0.056
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economic intuition suggests that factors affecting price changes must also
enter the decision to buy or sell . Indeed, limit orders are explicit functions of
the current price. Therefore, ifIBSk is to be included as an explanatory vari-
able in Xk, its endogeneity must be taken into account . Unfortunately, the
standard estimation techniques such as two-stage or three-stage least squares
do not apply here because of our discrete dependent variable . Moreover,
techniques that allow for discrete dependent variables cannot be applied
because the endogenous repressor IBSk is also discrete . In principle, it may
be possible to derive consistent estimators by considering a joint ordered
probit model for both variables, but this is beyond the scope of this chapter .
For this reason, we restrict our specification to include only lags of IBSk
and Vk .

However, we can "net out" the effect of the bid/ask spread by comput-
ing the change in the conditional mean for trade sizes larger than our base
case $5,000 buy. As long as the bid/ask spread remains relatively stable, the
change in the conditional mean induced by larger trades will give us a mea-
sure of price impact that is independent of it . In particular, the second entry
in the "IBM" column of Table 10 .3's upper panel shows that purchasing an
additional $5,000 of IBM ($10,000 total) increases the conditional mean by
0.060 ticks. However, purchasing an additional $495,000 of IBM ($500,000
total) increases the conditional mean by 0 .371 ticks; as expected, trading a
larger quantity always yields a larger price impact .

A comparison across columns in the upper panel of Table 10 .3 shows
that larger trades have higher price impact for CUE than for the other five
stocks. However, such a comparison ignores the fact that these stocks trade
at different price levels, hence a price impact of 0 .473 ticks for $500,000
of CUE may not be as large a percentage of price as a price impact of
0 .191 ticks for $500,000 of NAV . The lower portion of Table 10.3's upper
panel reports the price impact as percentages of the average of the high
and low prices of each stock, and a trade of $500,000 does have a higher
percentage price impact for NAV than for CUE-0 .434 percent versus 0.068
percent-even though its impact is considerably smaller when measured in
ticks. Interestingly, even as a percentage, price impact increases with dollar
volume .

In the lower panel of Table 10 .3 where price impact values have been
computed under the alternative assumption that Z~-~ = Z~-2 = Zk-3 = 0,
the conditional means E[Zk ] are closer to zero for the $5,000 buy. For
example, the expected price change of NAV is now -0 .235 ticks, whereas
in the upper panel it is -1 .670 ticks. Since we are now conditioning on a
different scenario, in which the three most recent transactions are buys that
have no impact on prices, the empirical estimates imply more probability in
the right tail of the conditional distribution of the subsequent price change .

That the conditional mean is still negative may signal the continued
importance of the bid/ask spread, nevertheless the price impact measure
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~E [ Zk] does increase with dollar volume in the lower panel . Moreover, these
values are similar in magnitude to those in the upper panel-in percentage
terms the price impact is virtually the same in both panels of Table 10.3 for
most of the six stocks . However, for NAV and T the percentage price impact
measures differ considerably between the upper and lower panels of Table
10.3, suggesting that price impact must be measured individually for each
security.

Of course, there is no reason to focus solely on the mean of the con-
ditional distribution of Zk since we have at our disposal an estimate of the
entire distribution . Under the scenarios of the upper and lower panels of
Table 10.3 we have also computed the standard deviations of conditional
distributions, but since they are quite stable across the two scenarios for the
sake of brevity we do not report them here .

To get a sense of their sensitivity to the conditioning variables, we have
plotted in Figure 10.3 the estimated conditional probabilities for the six
stocks under both scenarios . In each graph, the cross-hatched bars rep-
resent the conditional distribution for the sequence of three buys with a 0
tick price change at each trade, and a fixed trade size equal to the sample
median volume for each. The dark-shaded bars represent the conditional
distribution for the same sequence of three buys but with a ~-1 tick price
change for each of the three transactions, also each for a fixed trade size
equal to the sample median . The conditional distribution is clearly shifted
more to the right under the first scenario than under the second, as the
conditional means in Table 10.3 foreshadowed. However, the general shape
of the distribution seems rather well-preserved ; changing the path of past
price changes seems to translate the conditional distribution without greatly
altering the tail probabilities .

As a final summary of price impact for these securities, we plot "price
response" functions in Figure 10 .4 for the six stocks . The price response
function, which gives the percentage price impact as a function of dollar
volume, reveals several features of the market microstructure that are not
as apparent from the numbers in Table 10.3 . For example, market liquidity
is often defined as the ability to trade any volume with little or no price
impact, hence in very liquid markets the price response function should be
constant at zero-a flat price response function implies that the percentage
price impact is not affected by the size of the trade . Therefore a visual
measure of liquidity is the curvature of the price response function ; it is no
surprise that IBM possesses the flattest price response function of the six
stocks .

More generally, the shape of the price response function measures
whether there are any economies or diseconomies of scale in trading. An
upward-sloping curve implies diseconomies of scale, with larger dollar vol-
ume trades yielding a higher percentage price impact . As such, the slope
may be one measure of "market depth." For example, if the market for a
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Figure 10.3. Comparison of estimated ordered probit probabilities ofprice change, conditioned
on a sequence of increasing prices (1/I/1) versus a sequence of constant prices (0/0/0) .
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Table 10.4. Discreteness cannot be completely captured by simple rounding : ~ 2 tests reject
the null hypothesis of equally-spaced partition boundaries {~,) of the ordered probit model for
International Business Machines Corporation (IBM - 206, 794 trades), Quantum Chemical
Corporation (CUE - 26, 927 trades), Foster Wheeler Corporation (FWC - 18,199 trades),
Handy and Harman Company (HNH - 3,174 trades), Navistar International Corporation
(NAV - 96,127 trades), and American Telephone and Telegraph Company (T - I80, 726
trades), for the period from fanuary 4, 1988, to December 30, 1988. Entries in the column
labelled "m " denote the number of states in the ordered probit specification. The 5 % and 1 %
critical values of a ~2 random var~ate are 5.99 and 9.21, respectively; the 5 % and 1 % critical
values of a ~s random variate are 12 .6 and 16.8, respectively .

Stock
Sample
Size

η 2... •m-3 m

IBM

	

206,794

	

15,682.35

	

9

CUE

	

26,927

	

366.41

	

9

FWC

	

18,199

	

188.28

	

5

ΑιΑ

	

3,174

	

30.59

	

5

NAV

	

96,127

	

998.13

	

9

T

	

180,726

	

1,968.39

	

9

1 If price discreteness were simply the result of rounding a continuous "virtual" price variable
to the nearest eighth of a dollar, the ordered probit partition boundaries {~ 1 } will be equally
spaced . If they are, then the statistic ~/~ should behave as a ~m_~ variate where m is the number
of states in the ordered probit specification .

security is "deep," this is usually taken to mean that large volumes may be
traded before much of a price impact is observed . In such cases the price re-
sponse function may even be downward-sloping . In Figure 10 .4, all six stocks
exhibit trading diseconomies of scale since the price response functions are
all upward-sloping, although they increase at a decreasing rate . Such dis-
economies of scale suggest that it might pay to break up large trades into
sequences of smaller ones . However, recall that the values in Figure 10 .4
are derived from conditional distributions, conditioned on particular se-
quences of trades and prices . A comparison of the price impact o~ say, one
$100,000 trade with two $50,000 trades can be performed only if the condi-
tional distributions are recomputed to account for the different sequences
implicit in the two alternatives . Since these two distinct sequences have not
been accounted for in Figure 10 .4, the benefits of dividing large trades into
smaller ones cannot be inferred from it . Nevertheless, with the maximum
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Figure 10.4 . Percentage pace impact as a function of dollar volume computed from ordered
Probit probabilities, conditional on the three, most recent trades being buyer- initiated, and the
three most recent price changes being +1 tick each, for IBM (206, 794 trades), CUE (26, 927
trades) . FWC (18,199 trades), HNH (3,174 trades), NAV (96,127 trades), and T (I80, 726
trades), for the period from January 4, 1988, to December 30, 1988. Percentage price impact
is measured as a percentage of the average of the high and lom prices for each stock .

likelihood estimates in hand, such comparisons are trivial to calculate on a
case-by-case basis .

Since price response functions are defined in terms of percentage price
impact, cross-stock comparisons of liquidity can also be made . Figure 10 .4
shows that NAV, FWC, and ΑιΑ are considerably less liquid than the other
stocks, which is partly due to the low price ranges that the three stocks traded
in during 1988 (see Table 10 .1)-although ΑιΑ and NAV have comparable
price impacts when measured in ticks (see Table 10 .3's upper panel), NAV
looks much less liquid when impact is measured as a percentage of price
since it traded between $3.125 and $7.875, whereas ΑιΑ traded between
$14.250 and $18.500 during 1988 . Not surprisingly, since their price ranges
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are among the highest in the sample, IBM and CUE have the lowest price
response functions of the six stocks .

10.6.3 Does Discreteness Matter?

Despite the elegance and generality with which the ordered probit frame-
work accounts for price discreteness, irregular trading intervals, and the
influence of explanatory variables, the complexity of the estimation pro-
cedure raises the question of whether these features can be satisfactorily
addressed by a simpler model . Since ordered probit may be viewed as a
generalization of the linear regression model to discrete dependent vari-
ables, it is not surprising that the latter may share many of the advantages of
the former, price discreteness aside . However, linear regression is consider-
ably easier to implement. Therefore, what is gained by ordered probit?

In particular, suppose we ignore the fact that price changes Z k are dis-
crete and estimate the following simple regression model via ordinary least
squares:

Zk - XkΧ + ~k .

	

(10 .6.3)

Then, suppose we compute the conditional distribution of Zk by rounding
to the nearest eighth, thus

Pr (Βk = ~) = Pr (Ρ - is ~ τΡλ + ρk < Ρ + εs) .

	

(10.6.4)

With suitable restrictions on the Gk's, the regression model (10 .6.3) is known
as the "linear probability" model . The problems associated with applying
ordinary least squares to (10 .6.3) are well-known (see for example Judge,
Griffiths, Hill, Ltkepohl, and Lee (1985, Chapter 18 .2 .1) ) , and numerous
extensions have been developed to account for such problems. However,
implementing such extensions is at least as involved as maximum likelihood
estimation of the ordered probit model and therefore the comparison is of
less immediate interest. Despite these problems, we may still ask whether the
OLS estimates of (10 .6.3) and (10 .6.4) yield an adequate "approximation"
to a more formal model of price discreteness . Specifically, how different are
the probabilities in (10 .6.4) from those of the ordered probit model? If the
differences are small, then the linear regression model (10 .6.3) may be an
adequate substitute to ordered probit .

Under the assumption of IID Gaussian Gk's, we evaluate the conditional
probabilities in (10 .6.4) using the OLS parameter estimates and the same
values for the Xk's as in Section 10 .6.2, and graph them and the correspond-
ing ordered probit probabilities in Figure 10 .5. These graphs show that the
two models can yield very different conditional probabilities . All of the OLS
conditional distributions are unimodal and have little weight in the tails, in
sharp contrast to the much more varied conditional distributions generated
by ordered probit . For example, the OLS conditional probabilities show no
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Figure 10.5. Discreteness matters . A comparison of OLS probabilities versus ordered Probit
probabilities for price change, conditioned on an increasing price sequence (1/1/1) caused by
buyer-initiated trading. Note the nonlinear properties of the CUE and NAV ordered Probit
probabilities which OLS cannot capture.
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evidence of the nonmonotonicity that is readily apparent from the ordered
probit probabilities of CUE and NAV . In particular, for NAV a price change
of -3 ticks is clearly less probable than either -2 or -4 ticks, and for CUE,
a price change of -1 tick is less probable than of -2 ticks .

Nevertheless, for FWC the OLS and ordered probit probabilities are
rather close . However, ~t is dangerous to conclude from these matches that
OLS ~s generally acceptable, since these conditional distributions depend
sensitively on the values of the conditioning variables. For example, if we
plot the same probabilities conditioned on much higher values for ~k , there
would be strong differences between the OLS and ordered probit distribu-
tions for all six stocks .

Because the ordered probit partition boundaries {~i} are determined
by the data, the tail probabilities of the conditional distribution of price
changes may be large or small relative to the probabilities of more central
observations, unlike the probabilities implied by (10.6.3) which are dictated
by the (Gaussian) distribution function of ~k . Moreover, it is unlikely that us-
ing another distribution function will provide as much flexibility as ordered
probit, for the simple reason that (10 .6.3) constrains the state probabilities
to be linear in the Xk's (hence the term "linear probability model") , whereas
ordered probit allows for nonlinear effects by letting the data determine the
partition boundaries {ai} .

That OLS and ordered probit can differ is not surprising given the extra
degrees of freedom that the ordered probit model has to fit the conditional
distribution of price changes. In fact, it may be argued that the comparison
of OLS and ordered probit is not a fair one because of these extra degrees
of freedom (for example, why not allow the OLS residual variance to be het-
eroskedastic?) . But this misses the point of our comparison, which was not
meant to be fair but rather to see whether a simpler technique can provide
approximately the same information that a more complex technique like
ordered probit does. It should come as no surprise that OLS can come close
to fitting nonlinear phenomena if it is suitably extended (in fact, ordered
probit is one such extension) . But such an extended OLS analysis is gener-
ally as complicated to perform as ordered probit, making the comparison
less relevant for our purposes .

A more direct test of the difference between ordered probit and the
simple "rounded" linear regression model is to consider the special case of
ordered probit in which all the partition boundaries {ai} are equally spaced
and fall on sixteenths. That is, let the observed discrete price change Zk be
related to the unobserved continuous random variable Zk in the following
manner:

-~ or less

	

ifΒk ά ~-ΖΖ, -8 + is~ ,

Βk =

	

~

	

if Βk ρ [~ - is~ ~ + is)~

	

_ -3, . . . , 3, (10.6 .5)

Ρ or more if Βk ρ ~ Ρ - is ~ ßΗ~
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This is in the spirit of Ball (1988) in which there exists a "virtual" or "true"
price change Zk linked to the observed price change Z k by rounding Zk to
the nearest multiple of eighths of a dollar . A testable implication of (10 .6 .5)
is that the partition boundaries {~α} are equally-spaced, i .e .,

where

ί2 - ί1 = ί3 - ί2 - . . . = ο•m_1 - Τm-2 ,

where m is the number of states in our ordered probit model . We can
rewrite (10 .6.6) as a linear hypothesis for the (m -1) x 1-vector of ί's in the
following way :

á =-
(m-3) • (m-1)

Α: áί = 0,

	

(10.6.7)

/ε -2

	

ε

	

Ζ

	

Ζ

	

Ζ ~ ~ ~ Ζ~
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0 ~ Ε Ε 0
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0

	

1 -2

	

1

	

0 ~~ Ε 0

~0

	

0

	

0

	

0 0

	

1 -2 1~

(10.6.6)

(10 .6 .8)

Since the asymptotic distribution of the maximum likelihood estimator ~ is
given by

~(~ - ~) -~ N(o, ~),

	

(10.6.9)

where ~ is the appropriate submatrix of the inverse of the information ma-
trix corresponding to the likelihood function (10 .2.11), the "delta method"
yields the asymptotic distribution of the following statistic ~/~ under the null
hypothesis H :

Α: ε/i - ΫΡ'á'(áκá')-iáΡ ί, τm-3 Ε

	

(10.6.10)

Table 10 .4 reports the ~/~'s for our sample of six stocks, and since the 1 %
critical values of the ~2 and ~s are 9 .21 and 16.8, respectively, we can easily
reject the null hypothesis H for each of the stocks . However, because our

sample sizes are so large, large ~ 2 statistics need not signal important economic
departures from the null hypothesis. Nevertheless, the point estimates of
the ms's in Table 10 .2a show that they do differ in economically important
ways from the simpler rounding model (10 .6.5) . With CUE, for example,

~3 -όz is 2 .652 but ~4 - ό3 is 1.031 . Such a difference captures the empirical
fact that, conditioned on the Xk's and Wk's, -1-tick changes are less frequent
than -2-tick changes, even less frequent than predicted by the simple linear
probability model .

Discreteness does matter.
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Table 10.5. Names, ticker symbols, market values, and sample sizes over the period from
fanuary 4, 1988, to December 30, 1988 for I00 randomly selected stocks for which the ordered
Probit model was estimated. The selection procedure involved ranking all companies on the
CRSPdaily returns file by beginning-of year market value and randomly choosing 20 companies
in each of deciles 6 through 10 (decile 10 containing the largest firms), discarding companies
which are clearly identified as equity mutual funds . Asterisks next to ticker symbols indicate
those securities for which the maximum likelihood estimation procedure did not converge .

Decile 6

Decile 7

Ticker

	

Market Value Sample
Symbol Company Name

	

x $1,000

	

Size

ACP AMάRICAN REAL ESTATE PARTNERS L 217,181 2,394
BCL BIOCRAFT LABS INC 230,835 7,092
CUL CULLINET SOFTWARE INC 189,680 18,712
DCY DCNY CORP 149,073 1,567
FCH FIRST CAPITAL HLDGS CORP 159,088 8,899
GYK GIANT YELLOWKNIFE MINES LTD 137,337 1,594
ITX INTERNATIONAL TECHNOLOGY CORP 161,960 14,675
LOM LOMAS & NETTLETON MTG INVS 219,450 5,471
MCI* MASSMUTUAL CORPORATE INVS INC 159,390 727
NET* NORTH EUROPEAN OIL RTYTR 134,848 708
NPK NATIONAL PRESTO INDS INC 193,489 1,222
OCQ* ONEIDA LTD 133,665 1,643
OIL TRITON ENERGY CORP 195,815 3,203
SII SMITH INTERNATIONAL φιC 148,779 5,435
SKY SKYLINE CORP 145,821 5,804
SPF STANDARD PACIFIC CORP DE LP 215,360 11,530
TOL TOLL BROTHERS INC 157,463 5,519
WIC WICOR INC 228,044 1,331
WJ WATKINSJOHNSON CO 192,648 1,647
XTR

	

XTRA CORP

	

163,465

	

1,923

CER CILCORP φιC 400,138 1,756
CKL CLARK EQUIPMENT CO 408,509 11,580
CΟγ CENTRAL MAIιά POWER CO 353,648 5,326
DEI DIVERSIFIED ENERGIES INC DE 395,505 3,411
FDO FAMILY DOLLAR STORES INC 286,533 8,513
FRM FIRST MISSISSIPPI CΗRP 306,931 8,711
FUR FIRST UNION REAL EST EQ&MG φNVT5 329,041 3,213
KOG KOGER PROPERTIES INC 265,815 3,508
KWD KELLWOOD COMPANY 236,271 4,138
LOG RAYONIER TIMBERLANDS LP 302,500 2,670
MGM MGMUA COMMUNICATIONS 312,669 10,376
NPR* NEW PLAN RLTYTR 376,332 1,983
OKE ONEOK φιC 234,668 12,788
SFA SCIENTIFIC ATLANTA φιC 263,801 16,853
SIX* MOTEL 6 LP 396,768 2,020
SJM SMUCKERJM CO 373,931 762
SPW SPX CORD 366,163 7,304
SRR STRIDE RIΟά CORP 245,213 5,767
TGR TIGER INTERNATIONAL INC 352,968 21,612
TRN

	

TRINITY INDUSTRIES INC

	

457,366

	

18,219

(continued)
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Table 10.5. (continued)

Decήle 8

Decile 9

Ticker

	

Market Value Sample
Symbol Company Name

	

x $1,000

	

Size

APS AMάRICAN PRESIDENT COS LTD 617,376 21,554
CAW CAESARS WORLD INC 525,828 17,900
CBT CABΗΟ CORP 897,905 5,277
DDS DILLARD DEPARTMENT STORES INC 758,327 7,267
ERB ERBAMONT NV 796,698 8,007
FSI FLIGHT SAFETY INTL INC 833,456 4,562
FVB FIRST VIRGINIA BANKS INC 496,325 2,637
GLK GREAT LAKES CHEM CORP 938,358 6,982
HD HOME DEPOT INC 921,506 16,025
HPH HARNISCHFEGER INDUSTRIES INC 469,921 7,573
KU KENTUCKY UTILITIES CO 675,997 8,116
LAC LAC MINERALS LTD NEW 921,456 4,900
NVP NEVADA POWER CO 504,785 8,159
ODR OCEAN DRILLING & EXPL CO 849,965 4,694
PA PRIMERICA CORP NEW 946,507 35,390
PST PETRIE STORES CORP 730,688 12,291
REι ROLLINS ENVIRONMENTAL SVGS INC 825,353 44,272
SW * STONE & WEBSTER INC 499,568 847
TW T W SERVICES INC 691,852 16,863
USR UNITED STATES SHOE CORP

	

618,686

	

24,991

ABS ALBERTSONS INC 1,695,456 14,171
BDX BECTON DICKINSON & CO 2,029,188 17,499
CCL CARNNAL CRUISE LINES INC 1,294,152 7,111
CYR CRAY RESEARCH INC 2,180,374 26,459
FFC FUND AMάRICAN COS INC 1,608,525 6,884
FG USF & G CORP 2,163,821 56,848
GOU GULF CAιADá RESOURCES LIMITED 1,866,365 2,071
GWF GREAT WESTERN FINANCIAL CORP 1,932,755 20,705
MEA MEAD CORP 2,131,043 35,796
MEG MEDIA GENERAL INC 1,002,059 6,304
MLL MACMILLAN INC 1,387,400 22,083
NSP NORTHERN STATES POWER CΗ MN 1,852,777 14,482
PDQ PRIME MOTOR INNS INC 1,006,803 11,470
PKN PERKIN ELMER CORP 1,088,400 17,181
RYC RAYCHEM CORP 1,597,194 16,680
SNG SOUTHERN NEW ENGLAND TELECOM 1,397,070 4,662
SPS SOUTHWESTERN PUBLIC SERVICE CO 966,688 10,640
TET TEXAS EASTERN CORP 1,146,380 29,428
WAG WALGREEN COπγANY 1,891,310 23,684
WAN WANG LABS INC

	

1,801,475

	

36,607

(continued)
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Table 10.5. (continued)

Decήle 10

Ticker

	

Market Value Sample
Symbol Company Name

	

x $1,000

	

Size

AN AMOCO CORP 7,745,076 39,906
BN BORDEN INC 3,671,366 22,630
BNI BURLINGTON NORTHERN INC 4,644,253 33,224
BT BANKERS TRUST NY CORP 2,426,399 18,502
CAΟ CATERPILLAR INC DE 6,137,566 36,379
CBS CBS φιC 3,709,910 18,630
CCέ CAPITAL CITIES ABC φιC 5,581,410 14,585
CPC CγC INTERNATIONAL INC 3,317,679 27,852
DUK DUKE POWER CO 4,341,008 17,918
GCI GANNETT INC 6,335,081 33,512
GIS GENERAL. MILLS φιC 4,378,513 26,786
MAS MASCO CORP 2,867,259 25,746
MHP MCGRAW HILL INC 2,438,169 36,047
NT NORTHERN TELECOM LTD 4,049,909 10,128
NYN NYNEX CΗRP 3,101,539 40,514
PCG PACIFIC GAS & ELEC CO 5,982,064 93,981
PFE PFIZER INC 7,693,452 fi8,035
RAL RALSTON PURINA CO 4,517,751 24,710
SGγ SCHERING PLOUGH CORP 5,438,652 34,161
UCC UNION CAMγ CORP	2,672,966

	

14,080

10 .7 A Larger Sample

Although our sample of six securities contains several hundred thousand
observations, it is still only a small cross-section of the ISSM database, which
contains the transactions of over two thousand stocks. It would be impracti-
cal for us to estimate our ordered probit model for each one, so we apply our
specification to a larger sample of 100 securities chosen randomly, twenty
from each of market-value deciles 6 through 10 (decile 10 contains com-
panies with beginning-of-year market values in the top 10% of the CRSP
database), also with the restriction that none of these one hundred en-
gaged in stock splits or stock dividends greater than or equal to 3 : 2 . We
also discarded (without replacement) randomly chosen stocks that were ob-
viously mutual funds, replacing them with new random draws . Table 10 .5
lists the companies' names, ticker symbols, market values, and number of
trades included in our final samples .

Securities from deciles 1 through 5 were not selected because many
of them are so thinly traded that the small sample sizes would not permit
accurate estimation of the ordered probit parameters . For example, even
in deciles 6, 7, and 8, containing companies ranging from $133 million to
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Table 10.6. Summary statistics for the sample ~f 100 randomly chosen securities for the period
from January 4, 1988, to December 30, 1988. Market values are computed at the beginning
of the year.

Deciles
Statistic

	

6

	

7

	

8

	

9

	

10

Low Price ($)
Decile Mean

	

13.94

	

17.95

	

21 .47

	

28.02

	

59.90
Decile Std. Dev.

	

9. 14

	

9.75

	

12.47

	

12.95

	

62.27
High Price ($)

Decile Mean

	

21. 11

	

27.25

	

33.61

	

41.39

	

77.56
Decile Std. Dev.

	

11.42

	

12. 16

	

14.85

	

21.20

	

76.93
Market Value x $109

Decile Mean

	

0. 177

	

0.333

	

0.726

	

1.602

	

5.553
Decile Std. Dev.

	

0.033

	

0.065

	

0.167

	

0.414

	

3.737
% Prices > Midquote
Decile Mean

	

40.68

	

41.47

	

41 .77

	

42.53

	

43.55
Decile Std. Dev.

	

6.36

	

6.37

	

3.98

	

3.71

	

3. 19
% Prices = Midquote

Decile Mean

	

17. 13

	

19.08

	

17.91

	

18.47

	

16.85
Decile Std . Dev.

	

3.99

	

3.67

	

4.51

	

3.93

	

2.97
% Prices < Midquote

Decile Mean

	

42. 18

	

39.45

	

40.32

	

39.00

	

39.60
Decile Std . Dev.

	

4.03

	

4.77

	

4.30

	

3.80

	

2. 15
Avg. Price Change

Decile Mean

	

0.0085

	

0.0038

	

0.0058 -0.0006

	

0.0015
Decile Std. Dev.

	

0.0200

	

0.0115

	

0.0103

	

0.0054

	

0.0065
Avg. Time Between
Trades

Decile Mean

	

1,085.91

	

873.66

	

629.35

	

430.74

	

222.49
Decile Std. Dev.

	

512.59

	

489.01

	

431.79

	

330.26

	

109. 14
Avg. Bid/Ask Spread

Decile Mean

	

2. 1947

	

2. 3316

	

2.4926

	

2.5583

	

2.9938
Decήle Std. Dev.

	

0.5396

	

0.4657

	

0.3989

	

0.6514

	

1 .6637
Avg. S&P 500 Futures
Return s

Decile Mean

	

-0.0048 -0.0037 -0.0026 -0.0020 -0.0009
Decile Std . Dev.

	

0.0080

	

0.0035

	

0.0025

	

0.0019

	

0.0006
Avg. Buy/Sell Indicatorz

Decile Mean

	

-0.0150

	

0.0202

	

0.0145

	

0.0353

	

0.0395
Decile Std . Dev.

	

0.0987

	

0. 1064

	

0.0695

	

0.0640

	

0.0455
Avg. Signed
Transformed
Volume s

Decile Mean

	

3.9822

	

0. 1969

	

0.0782

	

0.2287

	

0.3017
Decile Std . Dev.

	

17.9222

	

0.6193

	

0.3230

	

0.3661

	

0.2504

(continued)
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Οίν1e 10.6. (continued)

Deciles
Statistic

	

6

	

7

	

8

	

9

	

10

Median Trading Volume ($)
Decile Mean

	

6, 002

	

7, 345

	

12,182

	

16, 483

	

28, 310
Decile Std. Dev.

	

2, 728

	

3,136

	

4, 985

	

10, 074

	

13, 474
Box-Cox Parameter, ~ 4

Decile Mean

	

0.1347 0.0710

	

0.0127

	

0.0230

	

0.0252
Decile Std. Dev.

	

0.2579

	

0.1517

	

0.0451

	

0.0679

	

0.1050

~ Five-minute continuously-compounded returns of the S&P 500 index futures price,
for the contract maturing in the closest month beyond the month in which trans-
action k occurred, where the return corresponding to the kth transaction of each
stock is computed with the futures price recorded one minute before the nearest
round minute j~rior to tk and the price recorded five minutes before this .

2 Takes the value 1 if the kth transaction price is greater than the average of the
quoted bid and ask prices at time t k , the value -1 if the kth transaction price is less
than the average of the quoted bid and ask prices at time t k , and 0 otherwise .

s Box-Cox transformation of dollar volume multiplied by the buy/sell indicator,
where the Box-Cox parameter ~ is estimated jointly with the other ordered probit
parameters via maximum likelihood .

4 Estimate of Box-Cox parameter ~ which determines the degree of curvature that
the transformation T~( Ε) exhibits in transforming dollar volume Uk before inclu-
sion as an explanatory variable in the ordered probit specification . If ~ = 1,
the transformation T~( Ε) is linear, hence dollar volume enters the ordered probit
model linearly. If ~ = 0, the transformation is equivalent to log(Ε) , hence the
natural logarithm of dollar volume enters the ordered probit model . When ~ is
between 0 and 1, the curvature of T~( Ε) is between logarithmic and linear.

$946 million in market value, there were still six companies for which the
maximum likelihood estimation procedure did not converge : MCI, NET,
OCQ, NPR, SIX, and SW. In all of these cases, the sample sizes were relatively
small, yielding ill-behaved and erratic likelihood functions .

Table 10.6 presents summary statistics for this sample of one hundred
securities broken down by deciles. As expected, the larger stocks tend to
have higher prices, shorter times between trades, higher bid/ask spreads (in
ticks) , and larger median dollar volume per trade . Note that the statistics for

T~ ( Uk) Ε IBSk implicitly include estimates ~ of the Box-Cox parameter which
differ across stocks . Also, although the mean and standard deviation of
T~(Vk) Ε IBSk for decile 6 differ dramatically from those of the other deciles,
these differences are driven solely by the outlier XTR. When this security
is dropped from decile 6, the mean and standard deviation of T~(Vk) Ε IBSk
become -0.0244 and 0.3915, respectively, much more in line with the values
of the other deciles .
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In Table 10.7 we summarize the price impact measures across deciles,
where we now define price impact to be the increase in the conditional
expected price change as dollar volume increases from a base case of $1,000
to either the median dollar volume for each individual stock (the first panel
of Table 10 .7) or a dollar volume of $100,000 (the second panel) . The first
two rows of both panels report decile means and standard deviations of the
absolute price impact (measured in ticks), whereas the second two rows of
both panels report decile means and standard deviations of percentage price
impact (measured as percentages of the mean of the high and low prices of
each stock) . FΖr each stock i, we set ~tk and ABk_i to their sample means
for that stock and condition on the following values for the other regressors :

Vk-2 = ΧΝo ' median dollar volume for stock i,

Vk-3 = εσΖ ' median dollar volume for stock i,

SPSOOk_ε = 0.001, SPSOOk_2 = 0 .001, SPSOOk_3 = 0.001,

Zk-1 = 1,

	

Zk-2 = 1+

	

Zk-3 = 1,

φέ^Sk-1 = 1,

	

IBSk-2 = 1,

	

IBSk-3 = 1 >

so that we are assuming the three most recent trades are buyer-initiated,
accompanied by price increases of one tick each, and the sizes of the two
earlier trades are equal to the median dollar volume of the particular stock
in question .

From Table 10.7 we see that conditional on a dollar volume equal to
the median for the most recent trade, larger capitalization stocks tend to
exhibit larger absolute price impact, no doubt due to their higher prices
and their larger median dollar volumes per trade. However, as percentages
of the average of their high and low prices, the price impact across deciles
is relatively constant as shown by the third row in the first panel of Table
10.7: the average price impact for a median trade in decile 6 is 0.0612%,
compared to 0.0523% in decile 10 . When conditioning on a dollar volume
of $100,000, however, the results are quite different : the average absolute
price impact is similar across deciles, but the average relative price impact
is considerably smaller in decile 10 (0 .0778%) than in decile 6 (0.2250%) .
Not surprisingly, a fixed $100,000 trade will have a greater percentage price
impact on smaller capitalization, less liquid stocks than on larger ones .

Further insights on how price impact varies cross-sectionally can be
gained from the cross-sectional regressions in Table 10 .8, where the four
price impact measures and the Box-Cox parameter estimates are each re-
gressed on the following four variables : market value, the initial price level,
median dollar volume, and median time-between-trades . Entries in the first
row show that the Box-Cox parameters are inversely related to all four vari-
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Table 10.7. Price impact measures, defined as the increase in conditional expected price
change given by the ordered Probit model as the volume of the most recent trade is increased
from a base case of $~ 000 to either the median level of volume for each security or a level of
$100, 000, for the sample of 100 randomly chosen securities for the period from January 4,
1988, to December 30, 1988 . Price impact measures expressed in percent are percentages of the
average of the high and lom prices ~f each security.

Deciles

Price impact measure

	

6

	

7

	

8

	

9

	

10

Price Impact in Ticks

Lagged volume = Median
Decile Mean

	

0.0778

	

0.0991

	

0.1342

	

0.1420

	

0.2020
Decile Std. Dev.

	

0.0771

	

0.0608

	

0.0358

	

0.0532

	

0.0676

Price Impact in Percent

Lagged volume = Median
Decile Mean

	

0.0612

	

0.0600

	

0.0703

	

0.0583

	

0.0523
Decile Std. Dev.

	

0.0336

	

0.0286

	

0.0207

	

0.0229

	

0.0262

Price Impact in Ticks

Lagged volume = $100,000
Decile Mean

	

0.2240

	

0.2611

	

0.2620

	

0.2521

	

0.2849
Decile Std. Dev.

	

0.1564

	

0.1174

	

0.0499

	

0.0617

	

0.0804

Price Impact in Percent

Lagged volume = $100,000
Decile Mean

	

0.2250

	

0.1660

	

0.1442

	

0.1148

	

0.0778
Decile Std. Dev.

	

0.1602

	

0.0745

	

0.0570

	

0.0633

	

0.0383

abler, though none of the coefficient estimates are statistically significant
and the adjusted R2 is negative, a symptom of the imprecision with which
the p i's are estimated. But the two percentage price impact regressions seem
to have higher explanatory power, with adjusted R2 's of 37.6% and 22.1%,
respectively. These two regressions have identical sign patterns, implying
that percentage price impact is larger for smaller stocks, lower-priced stocks,
higher-volume stocks, and stocks that trade less frequently .

Of course, these cross-sectional regressions are merely meant as data
summaries, and may not correspond to well-specified regression equations .
As a further check on the robustness of these regression-based inferences, in
Table 10.9 we report Spearman rank correlations between the dependent
and independent variables of Table 10 .8, which are nonparametric mea-
sures of association and are asymptotically normal with mean 0 and vari-
ance 1/(n - 1) under the null hypothesis of pairwise independence (see,
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Table 10.8. Summary of the cross-sectional dispersion in price impact measures and the
nonlinearity of the price-change/volume relation (as measured by the Box-Cox parameters, ~ 1 ),
via ordinary least-squares regressions for the sample of 100 randomly chosen securities, using
market value, initial price, median volume, and median time-between-trades as explanatory
variables, for the period from January 4, 1988, to December 30, 1988. Only 94 stocks are
included in each of the regressions since the maximum likelihood estimation procedure did not
converge for the omitted six . All the coefficents have been multiplied by a factor of 1, 000, and
z-statistics are given in parentheses, each of which is asymptotically distributed as .Χr(0, 1)
under the null hypothesis that the corresponding coefficient is zero .

Market Initial Median Median
Dependent Variable

	

Constant Value

	

Price Volume

	

~tk

	

R2

Box-Cox Parameter, ~~l

	

118.74 -2.08 -7.42 -8.39 -2.55 -0.008
(2.11) (-0.31) (-1 .35) (-1 .04) (-0.33)

Price Impact in Ticks

	

93.82

	

9.86

	

1.76

	

5.25

	

-2.31

	

0.184
Lagged Volume = Median

	

(3.72)

	

(3.27)

	

(0.71)

	

(1.45) (-0.66)
Price Impact in Percent

	

36.07

	

-1.19

	

-2.31

	

6.66

	

0.67

	

0.376
Lagged Volume = Median

	

(4.46) (-1.23) (-2 .92)

	

(5.72)

	

(0.60)
Price Impact in Ticks

	

265.34

	

8.07

	

-5.64 -3.59

	

3.25

	

0.003
Lagged Volume = $100,000 (7 .03)

	

(1.79) (-1.52) (-0 .66)

	

(0.62)
Price Impact in Percent

	

138.52

	

-8.53 -9.61

	

8.53

	

1.74

	

0.221
Lagged Volume = $100,000

	

(4.17) (-2.15) (-2 .95)

	

(1.78)

	

(0.38)
'The Box-Cox parameter ~ determines the degree of curvature that the transforma-
tion T~( Ε) exhibits in transforming dollar volume hk before inclusion as an explana-
tory variable in the ordered probit specification . If ~ = 1, the transformation T~( Ε)
is linear, hence dollar volume enters the ordered probit model linearly . If ~ = 0, the
transformation is equivalent to log( Ε) , hence the natural logarithm of dollar volume
enters the ordered probit model . When ~ is between 0 and 1, the curvature of T~( Ε)
is between logarithmic and linear .

for example, Randles and Wolfe (1979)) . Since .n = 94, the two-standard-
error confidence interval about zero for each of the correlation coefficients
is [-0 .207, 0 .207] . The sign patterns are much the same in Table 10.9 as
in Table 10.8, despite the fact that the Spearman rank correlations are not
partial correlation coefficients .

Such cross-sectional regressions and rank correlations serve only as in-
formal summaries of the data since they are not formally linked to any
explicit theories of how price impact should vary across stocks . However,
they are consistent with our earlier findings from the six stocks, suggesting
that those results are not specific to the behavior of a few possibly peculiar
stocks, but may be evidence of a more general and stable mechanism for
transaction prices .



344

	

I0. An Ordered Probit Analysis of Transaction Stock Prices

Table 10 .9. Robust measure of the cross-sectional dispersion in pace impact measures and
the nonlinearity of the price-change/volume relation (as measured by the Box-Cox parameters
~ z ), via the Spearman rank correlations of ~~ and pace impact measures with market value,
initial price, median volume, and median time-between-trades for the sample of 100 randomly
chosen securities, of which 94 are used since the maximum likelihood estimation procedure did
not converge for the omitted six, over the period from fanuary 4, 1988, to December 30, 1988 .
Under the null hypothesis of independence, each of the correlation coefficients is asymptotically
normal with mean 0 and variance 1 / (n -1), hence the two-standard-error confidence interval
for these correlation coefficients is [-0.207, 0.207] .

Market Initial Median

	

Median
Value

	

Price Volume

	

~ t

Box-Cox Parameter, ~ ; ~

	

-0.260 -0.503 -0.032

	

-0.015

Price Impact in Ticks

	

0.604

	

0.678

	

0.282

	

-0.360
Lagged Volume = Median

Price Impact in Percent

	

-0.156 -0.447

	

0.486

	

0.082
Lagged Volume = Median

Price Impact ~n Ticks

	

0.273

	

0.329 -0.020

	

-0.089
Lagged Volume = $100,000

Price Impact in Percent

	

-0.547 -0.815

	

0.088

	

0.316
Lagged Volume = $100,000

1The Box-Cox parameter ~ determines the degree of curvature that the transforma-
tion T~( Ε) exhibits in transforming dollar volume hk before inclusion as an explana-
tory variable in the ordered probit specification . If ~ = 1, the transformation T~( Ε)
is linear, hence dollar volume enters the ordered probit model linearly. If ~ = 0, the
transformation is equivalent to log( Ε) , hence the natural logarithm of dollar volume
enters the ordered probit model . When ~ is between 0 and 1, the curvature of T~( Ε)
is between logarithmic and linear.

10.8 Conclusion

Using 1988 transactions data from the ISSM database, we find that the se-
quence of trades does affect the conditional distribution for price changes,
and the effect is greater for larger capitalization and more actively traded
securities. Trade size is also an important factor in the conditional distri-
bution of price changes, with larger trades creating more price pressure,
but in a nonlinear fashion . The price impact of a trade depends critically
on the sequence of past price changes and order flows (buff/sell/buy ver-
sus sell/buy/bΦϋ) . The ordered probit framework allows us to compare the
price impact of trading over many different market scenarios, such as trading
"with" versus "against" the market, trading in "up" and "down" markets, etc .
Finally, we show that discreteness does matter, in the sense that the simpler
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linear regression analysis of price changes cannot capture all the features
of transaction price changes evident in the ordered probit estimates, such
as the clustering of price changes on even eighths .

Wήth these applications, we hope to have demonstrated the flexibil-
ity and power of the ordered probit model as a tool for investigating the
dynamic behavior of transaction prices . Much like the linear regression
model for continuous-valued data, the ordered probit model can capture
and summarize complex relations between discrete-valued price changes
and continuous-valued regressors . Indeed, even in the simple applications
considered here, we suffer from an embarrassment of riches in that there
are many other empirical implications of our ordered probit estimates that
we do not have space to report. For example, we have compared the price
impact of only one or two sequences of order flows, price history, and market
returns, but there are many other combinations of market conditions, some
that might yield considerably different findings . By selecting other scenar-
ios, we may obtain a deeper and broader understanding of how transaction
prices react to changing market conditions .

Although we have selected a wide range of regressors to illustrate the
flexibility of ordered probit, in practice the specific application will dictate
which regressors to include . If, for example, one is interested in testing the
implications of Admati and Pfleiderer's (1988) model of intraday patterns
in price and volume, natural regressors to include are time-of-day indicators
in the conditional mean and variance. If one is interested in measuring how
liquidity and price impact vary across markets, an exchange indicator would
be appropriate. For intraday event studies, "event" indicators in both the
conditional mean and variance are the natural regressors, and in such cases
the generalized residuals we calculated as diagnostics can also be used to
construct cumulative average (generalized) residuals .

In the few illustrative applications considered here, we have only hinted
at the kinds of insights that ordered probit can yield . The possibilities in-
crease exponentially as we consider the manyways our basic specification can
be changed to accommodate the growing number of highly parametrized
and less stylized theories about the market microstructure, and we expect
to see many other applications in the near future .
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Index-Futures Arbitrage and the

Behavior of Stock Index Futures Prices

T~~ SP~CT~CULAR GROw~'~ in the volume of trading in stock index futures
contracts reveals the interest in these instruments that is shared by a broad
cross section of market participants . It is generally agreed that the link-
age in prices between the underlying basket of stocks and the futures is
maintained by arbitrageurs . If this link is maintained effectively, then in-
vestors who are committed to trade will recognize these markets as perfect
substitutes, and their choice between these markets will be dictated by con-
venience and their transaction costs. However, researchers have reported
substantial and sustained deviation in futures prices from their theoretical
values ; indeed, Rubinstein (1987, p . 84) concludes that "The growth in in-
dex futures trading continues to outstrip the amounts of capital that are
available for arbitrage ."

Considerable attention has been focused on arbitrage strategies involy-
ing stock index futures and on their effects on markets, especially on the
expiration dates of these contracts . By contrast, there is little work on the
stochastic behavior of the deviation of futures prices from fair values . In
this chapter, we study transaction data on Standard & Poor's 500 futures
contracts in conjunction with minute-by-minute quotes of the S&P 500 in-
dex. Our goal is to examine the behavior of these prices in light of the
conventional arbitrageur's strategies .

It should be emphasized at the outset that it is extremely difficult to
specify a model for the deviations of futures prices from "fair values ." These
deviations are, presumably, affected by the flow of orders as well as by the
difference of opinion among participants regarding parameters of the valua-
tion model that provides "fair values ." It is well known that the conventional
strategies pursued by arbitrageurs to take advantage of these deviations are
not risk-free, and are influenced further by the transaction costs they in-
volve. The purpose of this chapter is to examine the empirical behavior of
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these deviations ; in doing so, we examine the validity of certain proposed
hypotheses regarding the stochastic behavior of these deviations, given that
market participants will attempt to exploit these as profit opportunities .

In Section 11.1 we discuss some considerations of the behavior of fu-
tures and index prices after describing the well-known and commonly used
pricing model . Section 11 .2 provides the empirical results, and we conclude
in Section 11 .3 .

11.1 Arbitrage Strategies and the Behavior of
Stock Index Futures Prίces

The arguments underlying the valuation of derivative assets exploit the avail-
ability of a replicating portfolio of existing assets whose value coincides with
the price of the derivative security at its expiration date . In frictionless
markets the availability of a perfect substitute for the derivative asset guar-
antees that a profit opportunity, if one surfaced, would attract "arbitrageurs"
who would quickly close the gap between the price of the asset and of its
substitute. The presence of transaction costs implies that the price of the
derivative asset could fluctuate within a band around its theoretical value
without representing a potential profit opportunity. The width of this band
would be dictated by the transaction costs of the most favorably situated
arbitrageurs . In the context of the daily settlement prices of stock index fu-
tures contracts, this has been examined by Modest and Sundaresan (1983) .
However, the band could also be affected by the fact that the replicating
portfolio of existing assets serves only as a close substitute, and that the tem-
poral behavior of the spread between the market price and a model value
is further influenced by alternative trading strategies that will be employed
by arbitrageurs . We examine these issues in this section .

It is well known, from the work of Black and Scholes (1973), that the
replicating portfolio for an option involves a dynamic, self-financing trad-
ing rule that depends on the unobservable volatility parameters for the
stochastic process of the underlying asset's price . However, for a forward
contract, the replicating portfolio involves a buy-and-hold strategy that, in
the absence of random payouts from the underlying asset, depends only on
observable quantities . The differences between forward prices and futures
prices have been studied extensively (see, for example, Black (1976) ; Cox,
Ingersoll, and Ross (1981) ; Richard and Sundaresan (1981) ; Jarrow and
Oldfield (1981) ; and French (1983) ) . With nonstochastic interest rates,
forward and futures prices will be equal ; however, the replicating portfolio
for futures contracts will involve a dynamic trading rule even in this case . l In

1 See Cox, Ingersoll, and Ross (1981, p . 340) . In later discussion (as also in the empirical
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practice, it is generally argued that differences in forward and futures prices

are small enough to be safely ignored ; indeed, many programs that seek to
arbitrage the price differences by trading in stock index futures and in the
basket of stocks representing the index employ the forward pricing model

adjusted for transaction costs . We begin by briefly examining this model
for forward prices on stock index portfolios (with and without transaction
costs), and we draw implications for the behavior of futures prices over a

contract's life.

11 .1 .1 Forward Contracts on Stock Indexes (No Transaction Costs)

Consider a forward contract on an index of stocks, where the index rep-
resents a capitalization-weighted basket of stocks and is a feasible buy-and-
hold portfolio . Assume that markets are perfect and frictionless, that any
performance bonds necessary to take a position in the forward market can
be posted in interest-bearing assets, that borrowing and lending take place
at the (constant) continuously compounded rate r, and that the basket of
stocks representing the index pays dividends continuously at the rate d .

Consider the following portfolio, constructed at date t and held until the

forward contract expires at date T :

1. Buy the basket of stocks at the price St (the index price at date t) and
continuously reinvest the dividends received until date T .

2. Borrow $St at t to finance the acquisition in Equation (11 .1 .1) .

3. Sell a forward contract at the currently quoted forward price G~,r •

This portfolio is costless at t ; and to avoid certain losses or gains at T, it can

be shown that

G~ Τ = S~e(r-d)(7-t) (11 .1 .1)

If the forward price at market G~ is greater than S~e~r-~(T_~) then a strategy
that buys the index and sells forward contracts will earn riskless profits in

excess of the risk-free rate r. If GT is less, then a strategy that sells the index
and buys futures contracts will achieve a financing rate below the risk-free

rate . 2

Section 11 .2) we use the term arbitrageur, consistent with current practice ; however, it is clear,
as stressed below, that the program trading strategies are not risk-free .

z In this case, investors who already own the basket of stocks represented in the index
portfolio are in the best position to undertake the arbitrage ; investors who are not already in
possession of the index basket would be forced to sell stocks short and would be subject to the
"uptick" rule for short sales . For a more complete description of these strategies, see Gould
(1987) ; and for analysis of the hedging costs and effectiveness, see Merrick (1988) .



350

	

I1 . IndexFutures Arbitrage and the Behavior of Stock Index Futures Prices

11.1 .2 The Impact ~f Transaction Costs

Stoll and Whaley (1986) discuss the impact of transaction costs on the index-
futures arbitrage strategy, starting with the forward-contract pricing relation
shown above . The impact of transaction costs is to permit the futures price
to fluctuate within a band around the formula value in relation (11.1.1) .
The width of the band derives from round-trip commissions in the stock
and futures markets and from the market impact costs of putting on the
trade initially. The market impact costs of closing the stock position can be
avoided by holding the position until expiration of the futures contract and
employing market-on-close orders . 3

We consider two issues related to this view . First, this line of argument
says that the mispricing around the formula value (the band) should not ex-
ceed a value (dictated by transaction costs) that is constant over the life of the
contract. That is, if the transaction costs are independent of the remaining
maturity for the contract, then the width of the band should not vary over
time . 4 Second, this argument provides no role for the arbitrageurs when
futures prices lie within the band ; there is no influence on the trajectory of
the futures price as long as it does not stray from its transaction-cost-based
limits. Consider the commonly defined "mispricing," 5

χι ,Τ = ίF~ .r - St el "-dχΤ `> ]~s~, (11 .1 .2)

which is the difference between the market futures price of the stock index
futures contract (Ft , T ) and its theoretical price (assuming that it is a forward
contract), all normalized by the index value . ó The transaction-cost limits
for x~,T would be given by the sum of the commission costs in the stock and
futures markets, plus the market impact cost of trading initially in the stocks
and in the futures . Sustained deviations of xt, ~ outside these limits would be
evidence of the lack of arbitrage capital . This view implies that x1,T should
be clipped above and below at these limits but provides no guidance with
respect to its behavior within the boundaries .

ßBeginning with the June 1987 contract, the expiration has shifted to using the opening
index price as the cash settlement price for the futures. Therefore, reversal of stock positions
would employ marketon-open orders, and these orders also avoid market impact costs .

4 Modest and Sundaresan (1983) argue that if arbitrageurs lose the interest earnings on a
fraction of the proceeds of the short sale of stocks when their strategy calls for shorting stock,
then the band would be asymmetric around the "fair" price and would be wider with more
time remaining . However, because of the uptick rule, arbitrageurs rarer use short positions
in program-driven strategies ; they generally employ the pools of stock they own or control if
the futures are underpriced .

5We use this term only because we lack a less clumsy alternative-we do not mean to imply
that every nonzero level of the "mispricing" is evidence of market inefficiency .

6 We work with the mispricing in relative terms because the major components of the
determinant of the bounds should be proportional to the level of the index .
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We argue that larger deviations in x t,T can persist outside these tran-
saction-cost (TC) limits for longer times until expiration (T - t) . This may
occur for several reasons. First, with longer times until expiration, there is
increased risk of unanticipated increases or decreases ~n dividends . These
will erode the anticipated profits from an attempt to arbitrage x l , T when it
violates these limits . Put another way, programs that seek riskless profits
should account for worst-case dividend policies . Second, the difference
between futures and forward prices, which is embedded in the definition
in Equation (11 .1.2), reflects the unanticipated interest earnings or costs
from financing the marking-to-market flows from the futures position . An
attempt to replicate the futures-contract payoff will require trading in the
stocks, and both of these will contribute to a wider limit for x t,T with greater
times to expiration. Finally, attempts at arbitrage-motivated trading that
employ less than the full basket of stocks in the index must allow for a
greater margin of error with longer times to expiration . This would arise
not only because of the possibility that the value of the chosen basket might
not track the index accurately, but also because costly adjustments would be
necessary prior to expiration . Consequently, wider deviations in xt,T will be
required at longer times to maturity in order to induce arbitrageurs to take
a position in these markets . These considerations point up the fact that the
"arbitrage" strategies are not risk-free .

There are countervailing forces that serve to provide a narrower trading
band, and they stem from the fact that arbitrageurs have the option either
to reverse their positions prior to the expiration date or to roll forward
their futures position into the next available maturity. To see this, suppose
that an arbitrageur views the random mispricing x~,T as an arbitrageable
sequence whose current Level is observable . She knows that the mispricing
disappears at date T so that xT,T = 0 . The arbitrage strategy conventionally
considered is to sell xt,T if it is positive at date t and to reverse the position
at T, or to buy it if x t , r is negative and to reverse that position at date T, as
long as

I x~,Tl > TCt ,

	

(11 .1 .3)

where more TC1 = round-trip stock commission + round-trip futures com-
mission + market impact in futures + market impact in stocks .$ However,
the arbitrageur knows that at a future date s < T it is possible for her (a) to
reverse her position by paying a market impact cost in both the stock and
futures markets or (b) to roll her futures position into the next maturity
and incur commissions and market impact costs only in the futures mar-

~Brennan and Schwartz (1986, 1987) make the argument, as we do here, that the arbi-
trageurs have the option to close out a position prematurely.

B This assumes that the transaction costs are the same for long and short positions in futures
and for purchases and sales in stocks . It is not crucial to the analysis .
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ket. Therefore, the optimal band at which to undertake an opening position
would be narrower than the optimal band in the absence of strategies (a)
and (b) . This is because at the current date t, with an arbitrage program
trade already in place, the arbitrageur benefits from the option value of clos-
ing her position prematurely at perhaps a greater profit than indicated by
the current level x~,T . Given these two arguments, it is important to examine
empirically the behavior of the deviations as a function of time to maturity .
We consider this in the next section .

However, this option argument has a further implication . Once an
arbitrage trade has been put on, it will be optimal to close that position prior
to putting on a new arbitrage program in the reverse direction. Suppose
that we had put on an arbitrage at date t (in the past) when xt,T > 0 by
buying the index basket and selling futures short . Then, to initiate an
offsetting trade at the current date, we would incur additional costs TC2,
where TC2 is simply the sum of the market impact costs in the stock and
futures markets. If we were to undertake this as a net new position, we would
need to cover the higher costs TCl . The implication is that the stochastic
behavior of the mispricing will display properties, over the next interval,
that depend on the history of the mispricing until that point . Suppose that
the historical trajectory of the mispricing xt,T has been positive and large .
Then arbitrageurs who had undertaken positions long in index stocks and
short in futures will undo them when at date s > T the mispricing xs,T has
fallen to some negative value . The magnitude of this value will depend,
among other things, on the additional transaction costs from closing the
position prematurely (TC2)'. If the mispricing never "corrects" itself over
the life of the contract, then the burden of the reversing trades will fall at
the close of the expiration date . In fact, the direction of market-on-close (or,
since the June 1987 expiration, market-on-open) orders on expiration days
may be predictable only if the history of the mispricing indicates that the
arbitrageurs took positions that were all on one side of the market and did
not have the opportunity to reverse or roll forward these positions profitably .
In Section 11.2 we consider the hypothesis that the behavior of x t,T over time
displays non-Markov properties: its distribution over the future is dependent
on its path in the past.

11.2 Empirical Evidence

In this section we present evidence using the intraday prices for the Standard
& Poor's 500 futures contract and for the underlying index . This evidence
deals with the behavior of the futures and index prices and with the h~pothe-
ses regarding the behavior of the mispricing series x~,T . WE begin first by
describing the data employed .
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11.2.1 Data
The futures-price database, obtained from the Chicago Mercantile
Exchange, consists of time-stamped transaction data for transactions in the
S&P 500 futures contracts from Apri11982 (the inception of trading) to June
1987. The contracts traded follow the March June-September-December
cycle-although the nearest contract is typically the most heavily traded .
Each transaction record contains (in addition to contract identification,
time stamp, and price) information which tags that transaction as a sale,
a bid, or an offer and which indicates whether it was canceled, corrected,
or a designated open or a close . The size (number of contracts) of the
transaction is not available .

These transaction data record only transactions with price changes . Be-
cause the trading occurs by open outcry in a continuous market, the time
stamping of a consummated transaction will lag by a few seconds, and per-
haps by more in periods of heavy trading . In these periods particularly, it is
possible to have the records stamped out of sequence. We observed several
transactions subsequent to 9:00 A.M. (subsequent to 8 :30 A.M. after October
1, 1985) occurring before the transaction thatwas labeled as the open-this
signified the end of the opening "round" of transactions . Likewise, we ob-
served transactions after the first designated closing "round" of transactions,
occurring after 3:14 P.M. Almost always, these open- and close-designated
records are also marked as representing a sale (as opposed to a bid or an
offer) .

The database of S&P 500 stock index quotes, time-stamped approxi-
mately one minute apart, was also provided to us by the Chicago Mercan-
tile Exchange (CME) . The index is updated continuously using transaction
prices (the most recent prices as reported) of the component 500 stocks .
This database captures these quotations approximately 60 seconds apart .
While traders on the floor of the CME have access to continuously updated
series, the index series available contains stale prices, especially for the thinly
traded stocks ; and the quoted index fails to use the bid or offer side of the
market, so that the price at which one can buy or sell the index basket might
be higher or lower than the quoted value . These facts must be kept in mind
when working with the mispricing series .

In computing the mispricing series, we use quotes that are approxi-
mately 15 minutes apart, and we employ the nearest quotes available after
the quarter-hour mark . Each contract is followed from the expiration date
of the previous contract until its expiration . Because the near futures are
heavily traded, and our stock index quotes are clocked one minute apart, this
means that our futures price will be stamped almost immediately following
the quarter-hour mark, while the index quote will be, on average, 30 seconds
after the quarter-hour mark . The mispricing computed from these quotes
will be biased, perhaps slightly, in favor of signaling potential profit oppor-
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tunities . Conversations with market makers suggest that the time taken to
put on a simultaneous program in the stock and futures markets depends,
among other things, on the size of the trade, on the composition of the
stock basket, and on the depth of the market-the estimates range from 60
seconds to several minutes . 9 Usually, the futures leg can be executed very
quickly. This means that, because we do not compute a separate series that
would represent executable profits after recognizing a profit opportunity,
the constructed series may be inappropriate to judge the actual profitability
of program trades .

In order to construct the mispricing series x~,T, we require dividend
forecasts for the 500 stocks in the index, and a measure of the interest rate
for loans maturing at the expiration date of the futures . We use the realized
daily dividend yield of the value-weighted index of all NYSE stocks supplied
by the Center for Research in Security Prices (CRSP) at the university of
Chicago as a proxy for the yield of the S&P 500 . 10 Given that the S&P 500
is also value-weighted, the CRSP value-weighted dividend yield should be
a reasonably proxy. Furthermore, given that the average maturity of our
futures contracts is 12 months, the error in employing this series is likely
to be small . The daily interest data for Treasury bills and for certificates
of deposit expiring around the expiration date were kindly supplied by
Kidder, Peabody. Throughout this chapter we report results using the rates
for certificates of deposit ; results using the Treasury-bill interest rate were
also calculated and are similar to those with the CDs .

The mispricing series so constructed is available for every quarter-hour
mark unti14:00 P.M. EST, although the S&P 500 futures contracts continue
to trade unti14a5 P.M. This series is constructed startingwith the September
1983 contract; we avoided using earlier contracts because prior studies had
reported unusual behavior for these . ll In Section 11 .2.2 we report on the
behavior of the futures and index series used to construct the mispricing.
Section 11 .2.3 considers the behavior of the actual mispricing series .

11.2.2 Behavior of Futures and Index Series

In this section we examine the behavior of futures prices and index prices
for each of the 16 contracts from September 1983 through June 1987 . We

TThis depends on whether the automated order-entry system is employed or not . Toward
the end of our sample period, the automated order~ntry system became the dominant mode of
stock-basket trades. Note also that arbitrageurs, because they have finer information regarding
bid and asked prices for the component basket of stocks, would be in a position to exploit this
information in constructing their strategies .

~~For the March and June X987 contracts, the C1tSP data are not available. We used the
daily forecasts of dividend yield (remaining until expiration) on the S&P 500 provided to us
b~ Kidder, Peabody.

~~See, for example, Figlewski (1984) .
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present evidence on the autocorrelations and on the variability of futures
prices and index prices ; our focus is on (1) the extent to which nonsyn-
chronous (or state) prices are a problem in available index values and (2)
the relative variability of the prices in two markets .~ 2

The results reported in this section employ first differences in the loga-
rithm of the futures price and in the logarithm of the index value over the
appropriate interval. By varying the interval length (we use 15, 30, 60, and
120 minutes and one trading day) , we can assess the importance of stale
prices in the index quotes .

Table 11.1 reports the autocorrelation estimates at eight lags for the
price changes for both the futures- and the spot-price series using the 15-
minute interval. They are computed from intraday intervals only: overnight
and weekend intervals are discarded . The autocorrelations of the futures
series are close to 0.0 at all eight lags, with only a slight tendency for the
first-order autocorrelation coefficient to be negative ; it is likely that this is
induced by the observed futures prices bouncing between the bid and asked
prices. By contrast, the index series is positively autocorrelated at the first
lag, with first-order autocorrelations ranging from 0 .038 to 0 .41 across the 16
contracts. At lags beyond the first, the index series exhibits autocorrelations
close to zero. These results are consistent with the presence of stale prices
in the available index quotes . It is noteworthy that the problem of stale
prices has diminished over time : the first-order autocorrelations for the
index series are noticeably smaller in the recent past . This finding mad be
attributed to increased stock market trading volume in recent years .

The autocorrelations for longer differencing intervals (except for one
trading day) are based on estimates that exploit the overlapping nature of
the data : these estimators are formed as a function of the estimators for
15-minute intervals . For example, the first-order autocorrelation for the
60-minute differencing interval, p6o (i), is given byls

ρ60(1) _ ρ(1) + 2ρ(2)+3ρ(3) + 4ρ(4) + 3ρ(5) + 2ρ(6)+ρ(7)

4 + 6ρ(1) + 4ρ(2) + 2ρ(3)

where p ( j) = jth-order correlation for 15-minute intervals . Given that our
basic series uses 15-minute intervals, this estimator is efficient in exploiting
the degree of overlap . We do not report higher-order autocorrelations for
the longer differencing intervals .

~ 2 See Kawaller, Koch, and Koch (1987) and Stoll and Whaley (1990) for an analysis of the
lead and lag relationships between the two markets .

~~This follows from the fact that the price change over an hourly interval is the sum of
the four (basic series) price changes over 15-minute intervals . Therefore, the autocorrelation
between the lagged price changes at hourly intervals p sp(1) reflects the autocorrelations from
the first lag for 15-minute data to autocorrelations at the seventh lag.
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Table 11 .1. Autocorrelationsfor changes of the logarithm of price in the Sf~P 500 futures
and index by contract, September 1983 to June 1987.

Contract
Lag

1

	

2

	

3

	

4

	

5

	

6

	

7

	

8
Number of
Observations

Panel A : Sf~P 500 Futures
Sep 83 0.02 -0 .07 -0 .05 -0 .01 0.03 -0 .01 0 .06 0 .03 1,512
Dec 83

	

0.00

	

0.02

	

0.04

	

0.00

	

0.02

	

0.00

	

0.02

	

0.03

	

1,512
Mar 84 0.00 -0 .01 -0 .04 0.05 0 .01 0.04 -0 .02 0 .03 1,488
Jun 84 -0.01 0.03 -0 .04 0.00 -0 .03 -0 .03 0 .02 0.01 1,440
Sep 84 -0.01 -0 .01 0.04 0.00 0.00 -0 .04 0.08 -0 .04 1,632
Dec 84 -0.05 -0 .02 0.05 0.04 0 .01 0 .03 0.00 -0 .05 1,536
Mar 85 -0.08

	

0.02

	

0.08

	

0.00

	

0.02 -0 .01

	

0.01

	

0.01

	

1,368
Jun 85 -0.08 -0 .01 0.07 0.04 0 .05 0 .00 0.02 -0 .04 1,632
Sep 85 -0.02

	

0.05

	

0.03

	

0.01

	

0.05

	

0.01

	

0.00 -0 .03

	

1,512
Dec 85 -0.07

	

0.02

	

0.06

	

0.05 -0 .02

	

0.02 -0 .02

	

0.01

	

1,654
Mar 86 -0.03

	

0.03

	

0.01 -0 .01

	

0.01

	

0.00

	

0.01

	

0.00

	

1,612
Jun 86

	

0.00

	

0.00

	

0.01

	

0.01

	

0.03

	

0.04

	

0.04 -0 .04

	

1,638
Sep 86 -0.02

	

0.03 -0.02 -0 .01

	

0.00

	

0.04

	

0.01

	

0.01

	

1,638
Dec 86 -0.02 -0 .01 0.03 -0 .02 -0 .02 -0 .04 0.02 0 .01 1,664
Mar 87 -0.14 -0 .16 0.22 -0 .04 -0 .04 0 .06 0.01 -0 .01 1,612
Jun 87

	

0.05

	

0.00

	

0.02

	

0.00

	

0.03 -0 .02

	

0.03 -0 .02

	

1,612

Panel B : Sf~P 500 Index

Sep 83

	

0.41 -0.03 -0 .09 -0 .04 0.02

	

0.05

	

0.07

	

0.06

	

1,512
Dec 83

	

0.41

	

0.03

	

0.01

	

0.00

	

0.00

	

0.00

	

0.03

	

0.03

	

1,512
Mar 84 0.31 0.03 -0 .05 -0 .02 -0 .01 0 .01 0.05 0.03 1,488
Jun 84

	

0.37

	

0.04 -0.03 -0 .02

	

0.01

	

0.03

	

0.02

	

0.01

	

1,440
Sep 84

	

0.29 -0 .02

	

0.00

	

0.01 -0.05 -0 .03

	

0.03

	

0.04

	

1,632
Dec 84

	

0.21 -0 .03

	

0.00

	

0.04

	

0.04

	

0.02

	

0.03

	

0.02

	

1,536
Mar 85

	

0.16 -0 .03

	

0.06

	

0.03 -0 .01

	

0.00

	

0.01

	

0.01

	

1,368
Jun 85

	

0.18 -0 .03

	

0.02

	

0.01

	

0.02

	

0.02

	

0.03

	

0.04

	

1,632
Sep 85

	

0.25

	

0.03

	

0.04

	

0.05

	

0.04

	

0.06

	

0.02

	

0.01

	

1,512
Dec 85

	

0.18

	

0.02

	

0.01 -0 .03

	

0.00

	

0.02

	

0.01

	

0.04

	

1,654
Mar 86

	

0.14

	

0.00

	

0.02

	

0.02 -0 .02

	

0.03

	

0.00

	

0.01

	

1,612
Jun 86

	

0.10 -0.02 -0 .01

	

0.06

	

0.03

	

0.07

	

0.03

	

0.01

	

1,638
Sep 86

	

0.04

	

0.04

	

0.03 -0.01 -0 .02

	

0.02

	

0.09

	

0.02

	

1,638
Dec 86

	

0.08

	

0.00

	

0.01

	

0.00 -0.01 -0 .02

	

0.02

	

0.00

	

1,664
Mar 87

	

0.04 -0 .07

	

0.13

	

0.01 -0.02 -0 .02

	

0.02

	

0.01

	

1,612
Jun 87

	

0.09

	

0.00

	

0.00

	

0.02

	

0.01 -0.02 -0 .04

	

0.00

	

1,612

Autocorrelations are based on 15-minute observation intervals .
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Panels B, C, D, and E of Table 11 .2 present the first-order autocor-
relations for the longer differencing intervals of 30, 60, and 120 minutes
and one trading dad, respectively. Two results emerge from these panels .
First, the problem of nonsynchronous data in the index series is mitigated
by employing longer differencing intervals : At 30 minutes, the first-order
autocorrelation in the index series (panel B) is much smaller than the first-
order autocorrelation at 15 minutes (panel A) , and the corresponding value
at 60 minutes (panel C) is close to zero . Second, whenever the first-order
autocorrelation for the index series is high (for any contract, over the longer
differencing intervals), the autocorrelation for the futures series also tends
to be high . For example, the 120-minute-interval data in panel C provides
evidence that, for the September 1984 contract, the index series' autocor-
relation was 0.19, but the futures autocorrelation was also high at 0.17 .
This indicates that nonsynchronous data are not the sole source of auto-
correlation .

We turn now to the variability of the two data series . If arbitrageurs
maintained the link between these markets, then the variability of the two
series should be equal: this is in keeping with the "redundant security"
view, and it is consistent with the implication from a forward pricing model,
as long as interest rates and dividends are nonstochastic . Furthermore, if
differences in transaction costs are large between these two markets, it is
possible that new information is incorporated with greater speed in one
market relative to the other. Therefore, these differences would exhibit
themselves when we examine the variability of the two series, especially for
the smaller differencing intervals .

Panels A through E of Table 11 .2 report the standard deviations for the
two series for the five observation intervals . Panel A reports the standard
deviation for the basic 15-minute differencing interval as well as the variance
ratio for the futures and index series . The standard deviations of the futures
series are all higher than those for the index, but this might be due solely
to nonsynchronous prices rather than to a structural feature of the markets .
The results for longer intervals, in panels B through E, serve to resolve this
issue . 14

If the variability of the two markets is equal, then as the observation
interval is lengthened and the stale-price problem is mitigated, the variance
ratio of the futures series to the index series should approach 1 . However,
this is not the case . The ratio in most cases is above 1 for all intervals . Table

14 The standard deviations for longer intervals are efficiently computed using information
from the 15-minute interval. For example, the 60-minute-interval standard deviation, asp, is
computed from

~so = ~~s~4+6p(1)+4p(2)+2~(3)]~~2
This follows from the fact that the hourly return is the sum of four returns over 15-minute
intervals, where these are correlated .
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Table 11 .2. Summary statistics for the changes of the logarithm of rrr~ce in the Sf~P 500
futures and index by contract, Sefitember 1983 to tune 1987.

Cnntract

Futures

	

Iπdex

Standard

	

First-Order

	

Standard

	

First-Order
Deviation l

	

Autocorrelation

	

Deviation l

	

Autocorrelation

Variance
Ratio2

Panel A: Date at 15-Minute Interuat~
Sep 83

	

0.163

	

0.022

	

0.128

	

0.408

	

1 .634

Dec 83

	

0.125

	

-0.001

	

0.095

	

0.409

	

1 .739

Mar 84

	

0.147

	

-0.005

	

0.119

	

0.313

	

1 .536
Jun 84

	

0.150

	

-0.010

	

0.114

	

0.369

	

1 .715
Sep 84

	

0.176

	

-0.011

	

0.149

	

0.289

	

1.410
Dec 84

	

0.155

	

-0.055

	

0.114

	

0.213

	

1 .858
Mar85

	

0.145

	

-0.078

	

0.112

	

0.156

	

1 .664
Jυπ 85

	

0.115

	

-0.079

	

0.093

	

0.178

	

7 .506
Sep 85

	

0.108

	

-0.020

	

0.083

	

0.249

	

1.683
Dec 85 0.128 -0.065 0 .102 0 .184 1 .575
Mar 86 0.172 -0.029 0 .137 0 .140 1 .576
Jun 86

	

0.171

	

-0.005

	

0.142

	

0.103

	

1 .460
Sep 86

	

x.202

	

-0.018

	

0.173

	

0.045

	

1 .362
Dec 86 0 .182 -0 .021 0.147 0.079 1 .520
Mar87

	

0.219

	

-0.136

	

O.76ß

	

0.038

	

1 .703
Jun 87

	

0.219

	

0.048

	

0.214

	

0.086

	

1.049

Panel B: Data at 30-Miπute Interυals

Sep 83 0 .233 -0.085 0.214 0.093 1 .186
Dec 83 0 .177 0 .036 0 .159 0 .170 1 .233
Mar 84

	

0.208

	

-0.035

	

0.193

	

0.121

	

1.164
Jun 84

	

0.210

	

0.010

	

0.189

	

0.152

	

1.240
Sep 84

	

0.248

	

0.007

	

0.239

	

0.093

	

1 .081
Dec 84

	

0.213

	

-0.027

	

0.177

	

0.062

	

1.448
Mar85

	

0.197

	

0.021

	

0.171

	

0.063

	

1.327
Jυπ 85

	

0.156

	

-0.018

	

0.143

	

0.055

	

1.178

Sep 85 0.151 0 .052 0.131 0 .137 1 .321
Dec 85 0.175 0.013 0.157 0.096 1.244
Mar 86

	

0.239

	

0.019

	

0.207

	

0.067

	

1.342
Jun 86

	

0.242

	

0.002

	

0.211

	

0.020

	

1.318

Sep 86

	

0.283

	

0.014

	

0.251

	

0.074

	

1.280
Dec 86

	

0.254

	

-0.004

	

0.216

	

0.038

	

1.380
Mar 87 0 .287 -0 .143 0.241 0.012 1.417
Jun 87

	

0.318

	

0.028

	

0.316

	

0.039

	

1.013

Panel C: Data at 6QMiπute Intervals
Sep 83

	

0.315

	

-0.047

	

0.316

	

0.029

	

0.992
Dec 83

	

0.255

	

0.051

	

0.244

	

0.077

	

1.092
Mar 84 0 .289 0 .032 0.289 0.031 1.002
Jun 84

	

0.299

	

-0.042

	

0.287

	

0.058

	

1.087
Sep 84

	

0.352

	

0.025

	

0.353

	

0.019

	

0.996
Dec 84

	

0.297

	

0.083

	

0.258

	

0.096

	

1.326
Mar85

	

0.281

	

0.60

	

0.249

	

0.068

	

1.275
Jun 85

	

0.218

	

0.111

	

0.208

	

C.075

	

1.097
Sep 85 0 .219 0 .089 0.198 0.153 1 .223
Dec 85

	

0.249

	

0.078

	

0.232

	

0.36

	

1.149
Mar86

	

0.342

	

0.016

	

0.302

	

0.054

	

1.282

Jun 86

	

0.342

	

0.064

	

0.301

	

0.113

	

1.294

Sep 8fi

	

0.404

	

0.004

	

0.367

	

0.060

	

1.209

Dec 86

	

0.359

	

-0.032

	

0.312

	

0.007

	

1.324
Mar 87 0 .376 0 .010 0 .343 0 .060 1 .201
,J~~n 87

	

0.456

	

0.041

	

0.455

	

0.017

	

1.001

(continued)



11 .2 . Empirical Evidence

	

359

Table 11.2. (continued)

Futures

	

Index

Contract

	

Standard

	

First-0rder

	

Standard

	

First-Order
Deviations Autocorrelation

	

Deviations Autocorrelańon

Panel D: Data at 120-Minute Intervals

Sep 83 0 .435 0.069 0.454 0.174 0.919
Dec 83

	

0.369

	

0.026

	

0.358

	

0.084

	

1 .066
Mar 84 0 .415 0.044 0 .414 0.107 1.003
Jun 84

	

0.414

	

-0.004

	

0.417

	

0.082

	

0.984
Sep 84

	

0.504

	

0.174

	

0.503

	

0.186

	

1.002
Dec 84

	

0.437

	

0.050

	

0.382

	

0.129

	

1.311
Mar 85 0 .410 0 .091 0 .364 0 .133 1 .265
Jun 85

	

X.325

	

0.021

	

0.305

	

0.118

	

1.134

Sep 85

	

0.322

	

0.022

	

0.300

	

0.087

	

1.155
Dec 85

	

0.365

	

0.022

	

0.334

	

0.076

	

1.195
Mar 86 0.487 0 .038 0.438 0 .095 1 .236
Jιιη 86

	

0.499

	

0.067

	

0.449

	

0.115

	

1.237
Sep 86 0.572 0.124 0.534 0.183 1.146
Dec 86

	

0.499

	

0.031

	

0.443

	

0.068

	

1.273

Mar 87 0.535 0.003 0.500 0 .003 1 .145
Jun 87

	

0.658

	

0.009

	

0.650

	

-0.040

	

1.025

Panel E: Data at One-Trading--Day Intervals

Sep 83

	

0.887

	

-0.062

	

0.874

	

0.038

	

1.032
Dec 83 0.703 0.063 0.709 0.081 0.983
Mar 84 0.845 -0 .181 0.839 -0.148 1 .013
Jun 84

	

0.790

	

-0.074

	

0.799

	

-0.015

	

0.978
Seρ 84

	

0.871

	

0.060

	

0.871

	

0.108

	

1 .001
Dec 84

	

0.760

	

-0.133

	

0.677

	

-0.003

	

1 .259
Mar 85 0 .811 -0 .144 0 .686 -0.030 1 .399
_Jun 85

	

0.595

	

0.122

	

0.551

	

0.194

	

1 .164
Sep 85 0.586 0.027 0.495 0.181 1 .400

Dec 85 0 .730 0.013 0.667 0.137 1 .199
Mar 86 0 .840 0.109 0.789 0.059 1 .134
Jun 86

	

1 .033

	

0.156

	

0.909

	

0.141

	

1 .292
Sep 86

	

1 .231

	

0.113

	

1 .120

	

0.121

	

1 .208

Dec 86

	

1 .017

	

-0.169

	

0.884

	

-0.006

	

1 .324
Mar 87 0 .873 0 .027 0 .781 0 .077 1 .248
Jun 87

	

1.278

	

0.034

	

1 .211

	

0.031

	

1 .114

Variance
Ratio2

sThe standard deviation is reported in percent .
2The variance ratio is the variance of the change of log futures price divided by the variance of the
change of log index price .

3 Results are calculated using prices at 3 p .m . EST.

11 .3 reports some aggregated evidence of the higher variability of the futures
market. The average variance ratio for the 16 contracts is presented for
each interval length. The average drops considerably from the 15-minute-
interval average of 1 .56 to the 60-minute-interval average of 1 .16 but remains
flat from the 60-minute interval to the one-trading-day interval . We test the
hypothesis that the ratio equals 1 by treating the ratios as being independent
across contracts . The z-statistics for this test are reported in Table 11 .3 .
The smallest z-statistic is 4 .40 for the 120-minute interval, supporting the
hypothesis that the futures market is more variable than the spot market .
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Table 11 .3 . Aggregate variance-ratio results (based on 16 contracts, September 1983 to June
1987) .

Observation-time

	

Average

	

Cross-Sectional
Interval

	

Variance Ratiο

	

Standard Deviation

15 minutes

	

1 .56

	

0.19

	

11.90

30 minutes

	

1 .26

	

0.12

	

8.81

60 minutes 1 .16 0 .12 5 .14

120 minutes 1 .13 0.12 4.40

One trading day

	

1 .17

	

0.14

	

4.79

The null hypothesis ~s that the average variance ratio equals 1 .

11.2.3 The Behavior of the Mispricing Serzes

We now examine the behavior of the mispricing series . Data for two con-
tracts, December 1984 and March 1987 (employing data 15 minutes apart),
are plotted in Figure 11 .1 . The graphs display some sharp reversals in the
mispricing levels, but the tendency is for the series to stay above or below
zero for substantial lengths of time . A single sharp spike that penetrates a
transactions bound (placed, say, at f0 .6 percent) is more likely to be symp-
tomatic of a lagging and smoothed index than an arbitrage opportunity .
The 100-point-scale interval on the x-axis corresponds to 1500 minutes, or
approximately four trading days . These graphs provide a visual description
of the typical behavior of the mispricing series .

Table 11 .4 reports the means, standard deviations (SDs), and autocorre-
lations at eight lags for the levels and the first differences in the constructed
mispricing series . We report the results for the overall time period, June
1983 through June 1987, as well as for the 16 separate contracts . All statis-
tics are computed using the quarter-hour intervals : overnight and weekend
intervals are treated as missing observations and are not included in the
computations .

The results for the mispricing levels are in panel A of Table 11 .4. Over
the 16 contracts, the average mispricing is 0 .12 percent. For the December
1986 contract, the average mispricing is the lowest, with a mean of -0 .20
percent; it is the highest for the December 1984 contract (0 .78 percent) .
These results are consistent with the hypothesis that the forward pricing
model gives a downward-biased estimate for the futures price, but the short
time period and the small number of contracts considered prohibit one from
drawing strong conclusions . The overall standard deviation of the mispric-
ing levels is 0.44 percent . Panel B of Table 11 .4 reports the corresponding

χ-statistic 1
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Figure 11 .1 . Mispr~cing (percent of index value) for (a) December 1984 and (b) March 1987
Sf~P 500 futures contracts .
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Table 11 .4. Summary statistics on the levels andfirst differences in mispricingin the Sf~P500
futures contracts, by expiration (15-minute-interval transaction data, mispricing in percent of

index value).

Contract Mean, % SD, %

Panel A : Sttistács ~n the Le~ets
Sep 83

	

0.01

	

0.29

	

0.83

	

0.73

	

0.70

	

x.70

	

0.70

	

0.71

	

0.69

	

0.67

	

1,575
Dec 83

	

0.37

	

0.29

	

0.86

	

0.75

	

0.65

	

0.56

	

0.45

	

0.33

	

0.21

	

0.07

	

1,575
Mar 84

	

0.50

	

0.36

	

0.85

	

0.73

	

0.62

	

0.52

	

0.41

	

0.28

	

0.12 -0.04

	

1,550
Jυπ 84

	

0.06

	

0.23

	

0.81

	

0.71

	

0.67

	

0.66

	

0.65

	

0.64

	

0.63

	

0.62

	

1,500
Sep 84

	

0.11

	

0.32

	

0.84

	

0.79

	

0.76

	

0.74

	

0.73

	

0.71

	

0.71

	

0.68

	

1,700
Dec 84

	

0.78

	

0.48

	

0.84

	

0.71

	

0.58

	

0.44

	

0.27

	

0.10 -0.11 -0 .33

	

1,600
Mar 85

	

0.64

	

0.60

	

0.93

	

0.87

	

0.82

	

0.75

	

0.69

	

0.61

	

0.53

	

0.44

	

1,425
Jιιη 85

	

0.28

	

0.34

	

0.91

	

0.87

	

0.83

	

0.79

	

0.74

	

0.69

	

0.64

	

0.58

	

1,700
Sep 85

	

0.04

	

0.28

	

0.94

	

0.92

	

0.90

	

0.89

	

0.87

	

0.85

	

0.84

	

0.83

	

1,575
Dec 85

	

-0.17

	

0.30

	

0.91

	

0.87

	

0.85

	

0.83

	

0.80

	

0.78

	

0.76

	

0.73

	

1,718
Mar 86

	

0.01

	

0.30

	

0.86

	

0.82

	

0.81

	

0.79

	

0.78

	

0.78

	

0.77

	

0.77

	

1,674
Jυπ 86

	

-0.03

	

0.29

	

0.85

	

0.81

	

0.81

	

0.80

	

0.78

	

0.77

	

0.77

	

0.76

	

1,701
Sep 86

	

-0.16

	

0.27

	

0.74

	

0.66

	

0.63

	

0.59

	

0.56

	

0.54

	

0.52

	

0.48

	

1,701
Dec 86

	

-0.20

	

0.34

	

0.85

	

0.82

	

0.80

	

0.78

	

0.76

	

0.74

	

0.71

	

0.67

	

1,728
Mar 87

	

-0.02

	

0.21

	

0.65

	

0.58

	

0.60

	

0.59

	

0.56

	

0.53

	

0.52

	

0.51

	

1,674
Jιιη 87

	

-0.11

	

0.22

	

0.46

	

0.34

	

0.31

	

0.27

	

0.25

	

0.23

	

0.20

	

0.17

	

1,674

Overall

	

0.12

	

0.44

	

0.93

	

0.91

	

0.90

	

0.89

	

0.88

	

0.87

	

0.86

	

0.85

	

26,070

Panel B: Statistics on the First Differences
Sep 83 0.00 0.15 -0.08 -0.14 -0.12 -0.05 -0.02 0 .01 0 .05 -0.01 1,512
Dec 83

	

O.O~

	

0.11 -0.16 -0.14 -0 .06

	

0.00 -0.01 -0 .02

	

0.03

	

0.01

	

1,512
Mar 84 0 .00 0 .14 -0.15 -0.10 -0.11 -0 .03 0.00 0 .03 -0 .06 0.04 1,488
Jun 84 0 .00 0 .13 -0.17 -0.08 -0.10 -0.02 -0.03 -0 .01 0 .00 -0.03 1,440
Sep 84 0.00 0 .16 -0.19 -0.06 -0.06 -0 .05 0.03 -0.04 0.05 -0.06 1,632
Dec 84

	

0.00

	

0.13 -0.27 -0.08

	

0.01

	

0.04 -0.05

	

0.04

	

0.00 -0.06

	

1,536
Mar 85

	

0.00

	

0.12 -0.27 -0.08

	

x.04 -0.01 -0.04 -0 .02

	

0.00

	

0.03

	

1,368
Jun 85

	

0.00

	

0.11 -0.25 -0.06

	

0.00

	

0.00

	

0.00 -0 .03

	

0.02 -0 .03

	

1,632
Sep 85

	

0.00

	

0.09 -0.26 -0.03

	

0.00 -0 .03

	

0.02 -0.02 -0 .04

	

0.02

	

1,512
Dec 85

	

0.00

	

0.11 -0.26 -0 .09

	

0.01

	

0.00 -0 .01

	

0.01 -0 .02

	

0.01

	

1,654
Mar 86

	

0.00

	

0.14 -0.30 -0 .01

	

0.00 -0.02 -0 .03

	

0.03 -0 .03

	

0.02

	

1,612
Jυπ 86

	

0.00

	

0.14 -0.30 -0 .08

	

0.02

	

0.01 -0 .04 0.01

	

0.02 -0 .06

	

1,638
Sep 86 0 .00 0 .16 -0.26 -0.05 -0.01 -0 .03 0 .01 0.04 -0.01 -0 .01 1,638
Dec 86

	

0.00

	

0.15 -0.24 -0.06 -0 .03

	

0.01 -0 .01

	

0.02

	

~.OO

	

0.00

	

1,664
Mar 87

	

0.00

	

0.16 -0.34 -0 .10

	

0.04

	

0.03 -0 .02

	

0.01 -0 .02

	

0.00

	

1,612
Jun 87

	

0.00

	

0.18 -0.20 -0 .05

	

0.04 -0 .03

	

0.02 -0.01

	

0.03 -0 .04

	

1,612

Overall

	

0.00

	

0.14 -0.23 -0.07 -0.02 -0.01 -0 .01

	

0.01

	

0.00 -0 .02

	

25,062

Mispricing = futures price - theoretical forward price .

results for the first differences in the mispricing series (the "changes") . The
mean of these changes is 0 .00 percent for all the contracts-as one might
expect, given that the level of the mispricing is constrained by arbitrageurs .
The standard deviations are fairly stable across all contracts, that for the
overall period being 0 .14 percent.

The series of the mispricing levels is highly autocorrelated (Table 11 .4,
panel A) . For the individual contracts, the first-order autocorrelation coef-
ficient ranges from 0 .46 to 0 .94. For 12 of the 16 contracts, the autocor-

Autocorrelations Lag

1

	

2

	

3

	

4

	

5

	

6

	

7

	

8
Number of
Observations
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relation is quite high for all eight lags reported (a two-hour time interval) .
This indicates that the series tends to persist above or below zero and not,
as one might have conjectured, fluctuate randomly around zero . 15 The au-
tocorrelation behavior of the first differences in the mispricing are close to
zero, except for the first two lags for which they are all negative (Table 11 .4,
panel B) . The first-order autocorrelation ranges from -0 .34 to -0.08; the
second-order autocorrelations are smaller in magnitude and range from
-0 .14 to -0 .01 . The negative autocorrelations at low lags are consistent
with the implication that when the mispricing deviates from zero it is elas-
tically pulled toward zero by the action of those traders who perceive that
transacting in one market is cheaper.~s

We also examine the relation between the magnitude of the mispricing
and the contract's maturity. Because we lack the theoretical framework to
suggest a precise functional form, we simply estimate a linear relation be-
tween the average absolute mispricing at 15-minute intervals over a given day
and the number of days remaining until maturity. The model we estimate is

z(t, T) _ ,Bp + ß ß(T - t) ~- ε(t, T),

N,

where z(t, T) = ABS ~ `~i ' r(j)
~-~ N~

X~,r(j) = mispricing at the jth quarter-hour mark during dad t,
for futures contract maturing at T ;

Nr = number of observations in day t .

The results indicate that the magnitude of the mispricing is positively re-
lated to time until maturity. For the overall time period, the estimates of
,Bo and ß1 are 0 .014 percent and 4.41, respectively. The z-statistic for the
null hypothesis of ß~ = 0 is 3.83 . 1718 Figure 11 .2 is drawn using these
estimates from the overall relationship, and it illustrates the cone-shaped
boundary that one obtains for the mean mispricing as a function of time

~ S The autocorrelations are actually calculated about the mean of the mispricing for the
contract, and not around 0 .0 .

~ s Negative autocorrelations at low lags can also be induced by stale prices in the index
quotes . However, in the recent contracts (September 1986 through June 1987) the negative
autocorrelations are present at the low lags, yet the results of Table 11 .1 indicate that the stale-
price problem (as measured by the autocorrelation of the index changes) is not important .

i ~This z-statistic is corrected for heteros~edasticity and autocorrelation in the regression
residual, using the technique of Newey and West (1987) . The usual OLS t-statistic for this
coefficient is 8 .88 .

18 We also ran this regression for each of the 16 contracts individually. For 14 of the lfi
contracts the estimate of ~~ is positive (although quite variable), and for 11 of the contracts the
z-statistics associated with the ~~ estimates are greater than 2 .0 . For the two contracts where ~~
estimates are negative (September 1984 and September 1986), the z-statistics associated with
the estimates (-1 .31 and -0 .18) are statistically insignificant .
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Figure 11 .2 . Boundary of mean absolute mispricing as a function of time to maturity .

until maturity. If these boundaries are strictly determined by round-trip
transaction costs alone, then a flat corridor should result . The results in-
dicate that the bounds drawn (as estimated) in Figure 11 .2 are consistent
with the impact of other factors that are influenced by time to expiration,
such as dividend uncertainty, marking-to-market flows, and risk in tracking
the stock index with a partial basket of stocks .

11.2.4 Path Dependence of Mispricing

We now investigate the path dependence of the mispricing series . One
implication of this hypothesis is that, conditional on the mispricing having
crossed one arbitrage bound, it is less likely to cross the opposite bound . This
phenomenon is a result of the fact that arbitrageurs will unwind positions es-
tablished when the mispricing was outside one bound before it reaches the
other bound . 19 To investigate this issue, we document for each of the 16 con-
tracts the number of upper-bound and lower-bound mispricing violations

19We do not consider the possibility that arbitrageurs might roll forward into the next
futures contract .

0



Table 11 .5. Misfir~cing violations for Sf~P 500 index futures .

Number of

	

Number of

	

Average

	

Number of

	

Number of

	

Average

	

Number of
Contract Upper-Bound Upper-Bound

	

Time above

	

Lower-Bound Lower-Bound

	

Time below

	

Observations 3
Violations

	

Crossings

	

Upper Bound2

	

Violations

	

Crossings

	

Lower Bound2

Sep 83

	

30

	

20

	

23

	

29

	

14

	

31

	

1,575
Dec 83

	

371

	

66

	

84

	

0

	

0

	

NA

	

1,575
Mar 84

	

631

	

64

	

148

	

0

	

0

	

NA

	

1,550
Jun 84

	

17

	

9

	

28

	

4

	

4

	

15

	

1,500
Sep 84

	

92

	

44

	

31

	

21

	

15

	

21

	

1,700
Dec 84

	

974

	

61

	

240

	

0

	

0

	

NA

	

1,600
Mar 85

	

625

	

28

	

335

	

0

	

0

	

NA

	

1,425
Jun 85

	

271

	

29

	

140

	

0

	

0

	

NA

	

1,700
Sep 85

	

64

	

24

	

40

	

0

	

0

	

NA

	

1,575
Dec 85

	

4

	

4

	

15

	

143

	

41

	

52

	

1,718
Mar 86

	

7

	

4

	

26

	

3fi

	

31

	

17

	

1,674
Jun 86

	

46

	

23

	

30

	

19

	

17

	

17

	

1,701
Sep 86

	

1

	

1

	

15

	

83

	

44

	

28

	

1,701
Dec 86

	

2

	

2

	

15

	

233

	

62

	

56

	

1,728
Mar 87

	

5

	

5

	

15

	

16

	

9

	

27

	

1,674
Jun 87

	

9

	

9

	

15

	

18

	

12

	

23

	

1,674

Overall

	

3149

	

393

	

120

	

602

	

249

	

36

	

26,070

tThe upper bound is set at +0 .6 percent and the lower bound at -0 .6 percent.
2The average time outside the bounds is in trading minutes .
3The observations are recorded at 15-minute intervals .
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that occur.20 A tendency for a given contract to have mostly upper-bound
violations or mostly lower-bound violations (but not both) is evidence con-
sistent with the mispricing being path-dependent . Indeed, this is the case .
Table 11.5 documents the number of upper- and lower-bound violations for
each contract. For this table, bounds of f0.6 percent are selected . 21 With
the exception of the September 1983 contract, each contract is dominated
by either upper-bound violations or lower-bound violations . For example,
the March 1985 contract violated the upper bound 625 times (using 15-
minute observations) and did not violate the lower bound for any of the
observations . In contrast, the December 1986 contract violated the -0.6
percent mispricing bound 233 times and violated the +0.6 percent bound
only two times . Table 11 .5 also reports the number of times a given bound
was crossed for each contract and the average time (in trading minutes) the
mispricing remained outside the bounds . These results indicate that the
mispricing remains outside the bounds for a considerable length of time
and rules out the possibility that stale prices in the index are a major cause
of the observed violations .

We can develop further evidence of the path dependence of the series
by examining conditional probabilities. Consider two possibilities :

1 . The mispricing is path-independent, following some stochastic process
that is pinned to zero at T .

2 . The mispricing is path-dependent ; conditional on having crossed an
upper (lower) bound, the probability of its hitting the lower (upper)
bound is smaller.

An implication of argument 1 is that if the mispricing is currently zero, then
it is equally likely to hit an upper or a lower bound independent of the
past. Argument 2 has a different implication if the mispricing is zero . 22 It
implies that if the mispricing has crossed the upper bound in the past, it is
more likely to continue to deviate above zero and more likely in the future
to hit the upper bound than the lower bound . We address this question
empirically by identifying all cases where the mispricing crossed the upper
or lower bound, returned to zero, and then again crossed the upper or lower
bound. For the 16 contracts, there is a total of 142 such cases .

20Stoll and Whaley (1986) also document violations of these bounds . They use hourly
observations and assume a constant dividend yield.

21 The results are not overly sensitive to the bound selected or to the use of a symmetric
bound about zero . We based the selection of 0 .6 percent on a round-trip stock commission
of 0 .70, a round-trip futures commission of 0 .08, a market impact cost in futures of 0.05, a
market impact in stocks of 0 .35, and an index level of 200. We have computed these results
with bounds placed at f0 .4 percent and X0.8 percent, and these show a similar pattern .

2 LWe also repeated the calculations using symmetric bounds about 0,14 percent (the overall
mispricing mean) in place of zero to account for the possibility that a bias in the forward pricing
model may be driving the results . The conclusion remains unaffected .
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Eighty-two of these cases are instances where the mispricing hits the
upper bound, haying previously hit a bound and gone to zero . The path
independence argument implies the probability of hitting the upper bound,
given that the mispricing is currently at zero, is the same whether it had
previously hit the upper or lower bound . The estimates of the conditional
probabilities from these 82 cases are :

p(x hitting upper bound ~ x has hit lower bound
and has crossed zero) = 0 .36

p(~ hitting upper bound ~ x has hit upper bound
and has crossed zero) = 0 .73 .

This argument should also hold for violations of the lower bound . For the

60 cases of hitting a bound, crossing zero, and hitting the lower bound, the
conditional probability estimates are :

p(x hitting lower bound ~ x has hit lower bound
and has crossed zero) = 0 .64

p(x hitting lower bound ~ x has hit upper bound
and has crossed zero) = 0 .27 .

These conditional probabilities differ substantially for the two cases . 23 The
evidence is consistent with the notion that the arbitrageurs' option to un-
wind prematurely introduces path dependence into the mispricing series .

The option to unwind prematurely and the path dependence can also
be related to the ability to predict expiration-day movements . Even if during
the life of the contract there has been substantial positive (negative) mispric-
ing, often there is also some time prior to expiration when the mispricing
is negative (positive) . (See the September 1984 contract in Figure 11 .1 for

an example .) Hence, arbitrageurs will often have had the opportunity to
unwind at a profit prior to expiration day, making expiration-day predic-
tions based on the identification of mispricing outside the arbitrage bound
difficult .

11.3 Conclusion

We have considered the intraday behavior of the S&P 500 futures and index

quotes. Comparisons of the autocorrelations of the changes of the log
price of these two series indicate that with a 15-minute observation interval,
nonsynchronous trading in the stocks in the index poses a problem. As

23The fι-value of a chi-square test of the equality of the conditional probabilities is less thαη
0 .001 .
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the interval length is increased, the autocorrelation disappears, with little
evidence of the problem with 60-minute observation intervals . We have
also examined the relative variability of the futures and spot markets . The
results indicate that the futures market is more variable than the spot market
even after controlling for problems caused by nonsynchronous prices in the
observed index.

Much of this chapter has focused on the behavior of the mispricing
series-the difference between the actual futures price and its theoretical
value. We had advanced and examined empirically two hypotheses : (1) that
the average magnitude of the mispricing increases with time to maturity and
(2) that the mispricing series is path-dependent . Evidence supporting these
hypotheses has been provided . The results have implications for the width
of the arbitrage bounds, the selection of a stochastic process to "model"
mispricing, the valuation of options related to the mispricing series, and
the prediction of expiration-day movements of the S&P 500 index .



12
Order Imbalances and Stock Price

Movements on October 19 and 20, 1987

THE VARIOUS OFFICIAL REPORTS on the October Crash all point to the break-
down of the linkage between the pricing of the future contract on the S&P
500 and the stocks making up that index . I On October 19 and 20, 1987,
the future contract often sold at substantial discounts from the cash index,
when theoretically it should have been selling at a slight premium . The
markets had become "delinked ."

On October 19, the S&P 500 dropped by more than twenty percent .
On October 20, the S&P 500 initially rose and then fell off for the rest of
the day to close with a small increase for the day . These two days provide an
ideal laboratory in which to examine the adjustment of prices of individual
stocks to major changes in market perceptions . In the turbulent market
of these two days, one might reasonably assume that a reevaluation of the
overall level of the market, and not information specific to individual firms,
caused most of the price changes in individual securities .

If most of the new information arriving on the floor of the NYSE on
these two days was related to the overall level of the market and not firm-
specific effects, large differences among the returns of large diverse groups
of stocks could be attributable to further breakdowns in the linkages within
the market . 2 Just as the extreme conditions of these two days resulted in a
breakdown of the linkages between the future market and the cash market
for stocks, there may well have been other breakdowns .

t Black Monday and the Future of Financial Markets (1989) contains excerpts of these various
official reports . It also contains some interes~ng articles about the crash, separately authored
by Robert J . Barro, Eugene E Fama, Daniel R . Fischel, Allan H . Metzler, Richard W. Roll, and
Lester G. Telser.

2 More technically, if the systematic factors in two large samples of stocks have on average
similar factor sensitivities, one would expect the returns to be similar . Some of the statistical
analyses will explicitly allow for differences in factor sensitivities .
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Since the S&P 500 index plays a crucial role in index-related trading, 3

this study begins with a comparison of the return and volume characteristics
of NYSE-listed stocks that are included in the S&P index with those that are
not included . This comparison reveals substantial differences in the returns
of these two groups . The S&P stocks declined roughly seven percentage
points more than non-S&P stocks on October 19 and, in the opening hours
of trading on October 20, recovered almost all of this loss . This pattern of
returns is consistent with a breakdown in the linkage between the pricing
of stocks in the S&P and those not in the S&P.

The study then proposes a measure of order imbalances . Over time,
there is a strong relation between this measure and the aggregate returns
of both S&P and non-S&P stocks . Cross-sectionally, there is also a signifi-
cant relation between the order imbalance for an individual security and its
concurrent return .

Finally, the analysis shows that those stocks that experienced the greatest
losses in the last hour of trading on October 19 experienced the greatest
gains in the first hour of trading on October 20 . Since those stocks with
the greatest losses on October 19 had the greatest order imbalances, this
pattern of reversals is consistent with a breakdown of the linkages among
the prices of individual securities .

The chapter is organized as follows. Section 12 .1 presents a description
of the data . Section 12.2 compares the return and volume characteristics
of S&P and non-S&P stocks . Section 12 .3 contains the analysis of order
imbalances. The study concludes with Section 12 .4 .

12.1 Some Preliminaries

The primary data that this study uses are transaction prices, volume, and
quotations for all stocks on the NewYork Stock Exchange for October 19 and
20 . The source of these data is Bridge Data. The data base itself contains only
trades and quotations from the NYSE . 4 As such, the data differ somewhat

sAs part of its report (1988), the SEC collected information on specific index-related
selling programs. On October 19, these selling programs represented 21 .1 percent of the S&P
volume . The actual percentage is undoubtedly greater . Moreover, there are some trading
strategies involving large baskets of stocks in the S&P that the SEC would not include as index
related. Also of interest, the data collected by the SEC indicated that 81 .0 percent of the index
arbitrage on October 19 involved the December future contract on the S&P Composite Index .

4 Geewax Terker and Company collected these data on a real time basis from Bridge Data .
Bridge Data also provides activity on other Exchanges, but the original collection process did
not retain these data .
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from the trades reported on the Composite tape that includes activity on
regional exchanges . 5

12.1.1 The Source of the Data

In analyzing these data, it is useful to have an understanding of how Bridge
Data obtains its data. For the purposes of this chapter, let us begin with the
Market Data System of the NYSE . This system is an automated communica-
tion system that collects all new quotations and trading information for all
activity on the floor of the NYSE .

One main input to this system is mark-sense cards that exchange em-
ployees complete and feed into optical card readers . In this non-automated
process, there is always the possibility that some cards are processed out of

sequence. We have no direct information on the potential magnitude of
this problem ; however, individuals familiar with this process have suggested
to us that this problem is likely to be more pronounced in periods of heavy
volume and particularly with trades that do not directly involve the specialist.
Also, when there is a simultaneous change in the quote and a trade based
upon the new quote, there is the possibility that the trade will be reported
before the new quote .

The Market Data System then transmits the quotation data to the Con-
solidated Quote System and the transaction data to the Consolidated Tape
System, both operated by SIAC (Securities Industry Automation Corpora-
tion) . These two systems collect all the data from the NYSE and other mar-
kets. SIAC then transmits these quotes and transactions to outside vendors
and to the floor of the NYSE through IGS (Information Generation System) .
Except for computer malfunctions, this process is almost instantaneous .

Up to this point, there are no time stamps on the transmitted data .
Each vendor and IGS supply their own time stamps. Thus, if there are any
delays in the transmission of prices by SIAC to vendors, the time stamps will
be incorrect . Two vendors of importance to this study are Bridge Data and
ADP. ADΡ calculates the S&P Composite Index, so that any errors or delays
in prices transmitted by SIAC to ADΡ will affect the Index. Also, the time
stamps supplied by Bridge Data may sometimes be incorrect .

According to the studies of the GAO and the SEC, there were on occa-
sion substantial delays in the processing of the mark-sense cards on Octo-
ber 19 and 20 . In addition, the SEC reports that SIAC experienced computer

50n October 19, we found on occasion large differences between the price of the last trade
on the NYSE and the last trade as reported in newspapers. For example, the price for the last
trade for Texaco on October 19 on the NI'SE was 30 .875 and was reported at 4 :03 . In contrast,
the closing price in The Wall Street,journal was 32 .50. Some investigative work disclosed that
a clerk on the Midwest Stock Exchange had recorded some early trades in Texaco after the
markets had closed but had failed to indicate that the trades were out of sequence .
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problems in transmitting transactions to outside vendors, with the result that
there were no trades reported from 1:57 p.m. to 2:06 p.m. on October 19
and from 11 :47 a.m. to 11 :51 a.m. on October 20 .6 According to an official
at the NYSE, all trades that should have been transmitted during these two
periods were sent to outside vendors as soon as possible after the computer
problems were fixed.

There were no reported computer problems associated with the Consol-
idated Quote System, and outside vendors continued to receive and transmit
changes in quotes during these two periods . Since an outside vendor uses
the time at which it receives a quote or transaction as its time stamp, the time
stamps fir the quotes and transactions provided by all outside vendors are
out of sequence during and slightly after these two periods . These errors
in sequencing may introduce biases in our analyses of buying and selling
pressure during these periods, a subject to be discussed below .

An analysis of the data from Bridge discloses that, in addition to these
two time intervals, there were no trades reported from 3:41 p.m. to 3:43 p.m .
on October 19 and from 3:44 p.m. to 3:45 p.m. on October 20 . We do not
know the reason for these gaps .

12.1.2 The Published Standard and Poor's Index

The published Standard and Poor's Composite Index is based upon 500
stocks. Of these 500 stocks, 462 have their primary market on the NYSE,
eight have their primary market on the American Stock Exchange, and thirty
are traded on NASDAQ.

The first step in calculating the index for a specific point in time is
to multiply the number of shares of common stock outstanding of each
company in the index by its stock price to obtain the stock's market value .
The number of shares outstanding comes from a publication of Standard
and Poor's (1987) . 7 The share price that S&P uses is almost always the price
of the last trade on the primary market, not a composite price .$

The next step is to sum these 500 market values, and the final step is
to divide this sum by a scale factor. This factor is adjusted over time to
neutralize the effect on the index of changes either in the composition of

6 An analysis of the data from Bridge indicates that there were some trades reported during
2:05 p .m. and none during 2 :07 p.m. on October 19 . We have not been able to determine the
reason for this slight discrepancy .

The number of shares outstanding that Standard & Poor's uses in the construction of its
indexes sometimes differs from the number reported in other financial publications . These
shares outstanding are adjusted for stock dividends and stock splits during the month of
October.

s In reconstructing the S&P index, it would be ideal to have the NYSE closing prices of
NYSE stocks on Friday, October 16. Not having these prices, we utilize for this date the closing
prices as reported on the Composite tape .
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the index or in the number of shares outstanding for a particular company .

S&P set the initial value of this scale factor so that the index value was "10 .0

as of 1941-1943 ."
Since this study had for the most part only access to NYSE prices, the

subsequent analyses approximate the S&P index using only the 462 NYSE
stocks. The market value of the thirty-eight non-NYSE stocks as of the close
on October 16 equals only 0.3 percent of the total market value of the index,
so that this approximation might be expected to be quite accurate . Indeed,
some direct calculations and some of the subsequent analyses are consistent
with this expectation . In one subsequent analysis, the 462 NYSE stocks are
partitioned into four size quartiles of roughly an equal number of compa-
nies each, based upon market values on October 16 . The largest quartile

contains 116 companies with market values in excess of 4.6 billion; the sec-

ond largest quartile contains 115 companies with market values between 2.2
and 4.6 billion ; the third contains 116 companies with values between 1 .0

billion and 2.2 billion; and the fourth contains 115 companies with market

values between 65 .4 million and 1 .0 billion .
In comparisons of companies included in the S&P with companies not

included in the S&P, we exclude the 178 non-S&P companies with market

values of less than 65.4 million-the smallest company listed in the S&P . 9

After excluding these 178 companies, there remain 929 non-S&P compa-

nies for comparison purposes . These 929 companies are classified into size
quartiles by the same break points as the quartiles of the S&P . This classifica-
tion results in sixteen non-S&P companies with assets in excess of 4.6 billion,
twenty-seven companies corresponding to the second largest quartile of S&P
stocks, 100 companies for the next S&P quartile, and 786 companies for the

smallest S&P quartile .

12.2 The Constructed Indexes

Indexes, such as the S&P 500, utilize the price of the last trade in calculating
market values . In a rapidly changing market, some of these past prices may
be stale and not reflect current conditions . This problem is particularly
acute for stocks that have not yet opened, in which case the index is based
upon the closing price of some prior day. As a result of such stale prices, the
published S&P index may underestimate losses in a falling market and un-
derestimate gains in a rising market. The Appendix describes an approach
to mitigate these biases by constructing indexes that utilize only prices from
stocks that have traded in the prior fifteen minutes . After the first hour
and a half of trading each day, the analysis in the Appendix indicates that

9We also excluded foreign companies whose common stocks are traded through ADRs .
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this approach virtually eliminates the bias from stale prices . There remains
some bias in the first hour and a half of trading .

The comparison of the returns of the NYSE stocks included in the S&P
Index with those not included utilizes two indexes-one for S&P stocks and
one for non-S&P stocks . To minimize the bias associated with stale prices,
both of these indexes utilize only prices of stocks that have traded in the
prior fifteen minutes . The index for non-S&P stocks is value weighted in
the same way as the constructed index for S&P stocks . Both of these indexes
have been standardized to 1 .0 as of the close of trading on October 16 . To
eliminate any confusion, we shall always refer to the index published by S&P
as the published index. Without any qualifier, the term "S&P index" will
refer to the calculated S&P index as shown in Figure 12 .1 .

There are substantial differences in the behavior of these two indexes
on October 19 and 20. On Monday, October 19, the S&P index dropped
20.5 percent. By the morning of Tuesday, October 20, the S&P index had
recaptured a significant portion of this loss . Thereafter, the S&P index fell
but closed with a positive gain for the day . In contrast, the return on the
non-S&P index was -13.1 on Monday and -5.5 percent on Tuesday.

In addition, the relative trading volume in S&P stocks exceeded the
relative trading volume in non-S&P stocks in every fifteen-minute interval
on October 19 and 20 (Figure 12 .2) . The relative trading volume ~n S&P
stocks is defined as the ratio of the total dollar value of trading in all S&P
stocks in a fifteen-minute interval to the total market value of all S&P stocks,
reexpressed as a percentage . The market values for each fifteen-minute
interval are the closing market values on October 16, adjusted for general
market movements to the beginning of each fifteen-minute interval . 10 The
relative trading volume in non-S&P stocks is similarly defined .

Of particular note, the recovery of the S&P stocks on Tuesday morning
brought the S&P index almost in line with the non-S&P index . One possible
interpretation of this recovery is that there was considerably greater selling
pressure on S&P stocks on October 19 than on non-S&P stocks . This selling
pressure pushed prices of S&P stocks down further than warranted, and the
recovery in the opening prices of S&P stocks on October 20 corrected this
unwarranted decline . The greater relative trading volume on S&P stocks is
also consistent with this interpretation .

Before concluding this section, let us consider another explanation for
the differences in the returns of the two indexes. The S&P index is weighted
more heavily toward larger stocks than the non-S&P index, and it is possible
that the differences in the returns on the two indexes may be due solely to
a size effect. Although a size effect can explain some of the differences in
the returns, it does not explain all of the differences. Results for indexes

toThe adjustment is made separately for each size quartile .
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Figure 12.1 . Comparison of price indexes for NYSE stocks included in the Sf~P 500 Index
and not included for October 19 and 20, 1987. On these two dates, the SEEP Index included
thirty-eight non-NYSE stocks, which are not included in the index . There were 929 non-Sf~P

stocks with market values equal to orgreater than the smallest company in the SEEP . The indexes

themselves are calculated every fifteen minutes . Each value of the index is based upon all stocks

that traded in the previous fifteen minutes . The market value of these stocks is estimated at two
points in time. The first estimate is based upon the closing prices on October l6 . The second
estimate is based upon the latest trade price in the previous fifteen minutes . The ratio of the
second estimate to the first estimate provides the values of the plotted indexes . The value of the
plotted indexes at 9:30 on October 19 is set to one.

constructed using size quartiles are presented in Table 12 .1 . From Friday
close to Monday close, indexes for any size quartile for S&P stocks declined
more than the corresponding indexes for non-S&P stocks. tl There is no
simple relation to size; for S&P stocks, the returns increase slightly with size,
and, for non-S&P stocks, they decrease with size .

From Monday close to 10:30 on Tuesday, the returns on S&P stocks
for any size quartile exceeded the returns for non-S&P stocks . Yet, unlike
the Monday returns, there is a substantial size effect with the larger stocks,

11 These indexes are constructed in exactly the same way as the overall indexes and, thus,
are value weighted . However, in view of the control for size, the range of the market values of
the companies within each quartile is considerably less than the range for the overall indexes .
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0.06

S&Ρ
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Figure 12.2. Plot of dollar volume in each fifteen-minute interval on October 19 and 20,
1987 as a percent of the market value of the stocks outstanding separately for S~~P and non-
Sf~P stocks . These plots exclude companies with less than 65.4 million dollars of outstanding
stock as of the close on October 16 . Market values for each fifteen-minute interval are the closing
market values on October 16, adjusted for general market movements to the beginning of each
fifteen-minute interval. The adjustment is made separately for each size quartile. The circled
points represent time periods in which there were breakdowns in the reporting systems and thus
may represent less reliable data .

particularly those in the S&P index, displaying the greater returns . From
Friday close to 10:30 on Tuesday, the losses on S&P stocks for any size quartile
exceeded those on non-S&P stocks. There is a size effect with the smaller
stocks realizing the greatest losses . Nonetheless, because of the differences
in the weightings in the S&P and non-S&P indexes, the difference in the
overall returns is only 0 .6 percent . 12

12 The differences in returns for the indexes reported in the text are reasonably accurate
measures of what actually happened on October 19 and 20 . The S&P index did decline
more than the non-S&P index on October 19 and almost eliminated this greater decline by
the morning of October 20 . The purpose of this footnote is to assess whether the differences
between the two indexes are statistically attributable to the inclusion or exclusion from the S&P
index, holding constant other factors that might account for the differences . In this exercise,
the other factors are the market values of the stocks as of the close on Friday, October 16, and
the beta coefficients based upon weekly regressions for the fifty-two weeks ending in September
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Table 12.1 . Percentage returns on SEEP and non-Sf~P stocks cross-classified by firm size
quartiles for three time intervals on October 19 and 20, 1987 . The overall returns from Friday
close to Monday close and from Friday close to 10:30 on Tuesday are taken from the index
values plotted in Figure 12.1. The overall return from Monday close to 10:30 on Tuesday is
derived from these huo returns. The breakpoints for the size quartiles are based upon the Sf~P
stocks and are determined so as to include approximately the same number of SEEP stocks in
each quartile. As a consequence, there are many more non-SEEP stocks in the smallfirm quartile
than in the large firm quartile. In a similar u~ay to the Overall index, the returns from Friday
close for the size quartiles are calculated using only stocks that have traded in the previous
fifteen minutes and valued at the last trade in that interval .

Firm Size
Quartile

Friday Close to

	

Monday Close to

	

Friday Close to
Monday Close

	

10:30 Tuesday

	

10:30 Tuesday

S&P Non-S&P

	

S&P Non-S&P

	

S&P Non-S&P

Large Firms

	

-20.9

	

-11.6

	

12.2

	

2.0

	

-11.3

	

-9.8

2

	

-20.2

	

-11.9

	

8.3

	

3.3

	

-13.5

	

-9.1

3

	

-18.9

	

-15.0

	

6.4

	

2.2

	

-13.8

	

-13.1

Small Firms

	

-18.8

	

-14.5

	

4.4

	

0.9

	

-15.2

	

-13.7

Overall

	

-20.5

	

-13.1

	

10.5

	

1 .7

	

-12.2

	

-11 .6

1987 on an equally weighted index of all NYSE stocks . (If there were less than fifty-twο weeks
of available data, betas were still estimated as long as there are at least thirty-seven weeks of
data . )
The following regressions are estimated :

R Mono _ -10.59 -

	

3.78 ~~ -

	

0.04 ln(M~) -

	

3.95 ßá,

	

R2 = 0.13,

(-6 .50)

	

(-5.42)

	

(-0.18)

	

(-6.46)

R Toes; _ -7.89 +

	

4.07 ~á +

	

1.34 ln(M~) +

	

1 .02 ß ;,

	

R2 = 0.20,

(-4 .11)

	

(5 .56)

	

(4.86)

	

(1.81)

R Oveá = -17.7 5 -

	

0.83 ~; +

	

1.13 In(M~) -

	

3.09 ß;,

	

R2 = 0.06,

(-12 .46)

	

(-1 .36)

	

(5.39)

	

(-5.20)

where R Mon, is the return on stock i from the close on October 16 to the close on October 19 ;
R Toes; is the return, if it can be calculated, from the close on October 19 to the mid-morning
price on October 20, defined as the traded price closest to 10 :30 in the following fifteen
minutes; R Ove; is the return from the close on October 16 to the mid-morning price on
October 20 ; ~ ; is a dummy variable assuming a value of one for S&P stocks and zero otherwise ;
M; is the October 16 market value of stock i, and ß~ is the fifty-twο week beta coefficient. The
sample for these regressions is the 955 stocks with complete data, of which 420 are S&P stocks .
Heteroscedasticity-consistent z-statistics are in parentheses .
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12.3 Buying and Selling Pressure

In the last section, a comparison of the indexes for S&P and non-S&P stocks
indicates that the prices of S&P stocks declined 7.4 percentage points more
than the prices of non-S&P stocks on October 19. By the morning of October
20, the prices of S&P stocks had bounced back nearly to the level of non-S&P
stocks.

This greater decline in S&P stocks and subsequent reversal is consistent
with the hypothesis that there was greater selling and trading pressure on
S&P stocks than on non-S&P stock on Monday afternoon . However, it is
also consistent with other hypotheses such as the presence of a specific
factor related to S&P stocks alone . Such a factor might be related to index
arbitrage .

This section begins with the definition of a statistic to measure buying
and selling pressure or, in short, order imbalance . At the aggregate level,
there is a strong correlation between this measure of order imbalance and
the return on the index. At the security level, there is significant correlation
between the order imbalance for individual securities and their returns .
Finally, the chapter finds that those stocks that fell the most on October 19
experienced the greatest recovery on October 20 . This finding applies to
both S&P and non-S&P stocks .

12.3.1 A Measure of Order Imbalance

The measure of order imbalance that this study uses is the dollar volume
at the ask price over an interval of time less the dollar volume at the bid
price over the same interval . Implicit in this measure is the assumption that
trades between the bid and the ask price generate neither buying nor selling
pressure. A positive value for this measure indicates net buying pressure,
and a negative value indicates net selling pressure .

In estimating this measure of order imbalance, it is important to keep
in mind some of the limitations of the data available to this study . As already
mentioned, the procedures for recording changes in quotations and for
reporting transactions do not always guarantee that the time sequence of
these records is correct . Sometimes, when there is a change in the quotes

The estimates of the coefficients of these regressions are consistent with the relations pre-
sented in the text. The coefficient on the dummy variable is significantly negative on Monday,
significantly positive on Tuesday, and nonsignificant over the two periods combined . On
Monday, the beta coefficient enters significantly, while, on Tuesday, the market value enters
significantly. Over the two periods combined, both the beta coefficient and the market value
enter significantly. The behavior of the coefficients in these three regressions suggests that
there is some interaction between market value and beta that the linear specification does not
capture. The availability of two days of data for this study precludes our pursuing the nature
of this interaction .



12.3 . Buying and Selling Pressure

	

379

and an immediate transaction, the transaction is recorded before the change
in the offer prices and sometimes after . 13 Although orders matched in the
crowd should be recorded immediately, they sometimes are not . Finally,
there are outright errors .14

To cope with these potential problems, the estimate of the order imbal-
ance uses the following algorithm : let t be the minute in which a transaction
occurs .15 Let tp be the minute which contains the nearest prior quote . If
the transaction price is between the bid and the ask of this prior quote, the
transaction is treated as a cross and not included in the estimate of the or-
der imbalance . If the transaction price is at the bid, the dollar value of the
transaction is classified as a sale . If the price is at the ask, the dollar value of
the transaction is classified as a buy. A quote that passes one of these three
tests is termed a "matched" quote .

If the quote is not matched, the transaction price is then compared
in reverse chronological order to prior quotations, if and, in tp to find a
matched quote. If a matched quote is found, the quote is used to classify
the trade as a bud, cross, or sell . If no matched quote is found, the quotes in
minute t following the trade are examined in chronological order to find
a matched quote to classify the trade . If no matched quote is found, the
minute (tp - 1) is searched in reverse chronological order . If still no quote
is found, the minute (t + 1) is searched . This process is repeated again and
again until minutes (tp - 4) and (t + 4) are searched . If finally there are no
matched quotes, the transaction is dropped .

On October 19, 82.8 percent of trades in terms of share volume 16 match
with the immediately previous quote, 9.5 percent with a following quote in
minute t, and 6.2 percent with quotes in other minutes, leaving 1.5 percent
of the trades unmatched. Of the matched trades, 40.7 percent in terms of
share volume occurred within the bid and ask prices . The percentages for
October 20 are 81.6 percent with the immediately previous quote, 12 .3 per-
cent with a following quote in minute t, 4.5 percent with other quotes, and
1 .6 percent with no matched quotes . Finally, 42 .4 percent of the matched
trades occurred within the bid and ask prices .

This estimate of order imbalance obviously contains some measurement
error, caused by misclassification . i~ However, given the strong relation be-
tween this estimate of order imbalance and concurrent price movements,

13 Changes in offer prices and recording of transactions take place in part in different com-
puters . If these computers at critical times are out of phase, there will be errors in sequences .

14As examples, a smudged optical card or failure to code an order out of sequence would
introduce errors .

~ 5 Trades marked out of sequence are discarded.
~ b Trades marked out of sequence are discarded.
17Án error might occur in the following scenario . Assume that the prior quote was 20 bid

and 20 á ask and the next prior quote was 19 s bid and 20 ask . The algorithm would classify a
trade at 20 as a sell, even though it might be a buy .
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the measurement error does not obscure the relation. Nonetheless, in in-
terpreting the following empirical results, the reader should bear in mind
the potential biases that these measurement errors might introduce .

12.3.2 Time-Series Results

The analysis in this section examines the relation between fifteen-minute
returns and aggregate order imbalances . As detailed in the Appendix, the
estimates of fiteen-minute returns utilize only stocks that trade in two con-
secutive fifteen-minute periods . The actual estimate of the fifteen-minute
return is the ratio of the aggregate market value of these stocks at the end
of the fifteen-minute interval to the aggregate market value of these stocks
at the end of the prior fifteen-minute interval, reexpressed as a percentage .
The price used in calculating the market value is the mean of the bid and
ask prices at the time of the last transaction in each interval . Ig The aggre-
gate order imbalance is the sum of the order imbalances of the individual
securities within the fifteen-minute interval.

In the aggregate, there is a strong positive relation between the fifteen-
minute returns for the S&P stocks and the aggregate net buying and selling
pressure (Figures 12 .3 and 12.4). For October 19, the sample correlation is
0.81 and, for October 20, 0.86. The relations for non-S&P stocks are slightly
weaker, with correlations of 0 .81 and 0.72 (Figures 12 .5 and 12 .6) . All four
of these correlation coefficients are significant at usual levels . 19

This positive relation is consistent with an inventory model in which
specialists reduce their bid and ask prices when their inventories increase
and raise these prices when their inventories decrease . This positive relation
is also consistent with a cascade model in which an order imbalance leads to a
price change and this price change in turn leads to further order imbalance,
and so on. This positive relation by itself does not establish that there is a
simple causal relation between order imbalances and price changes .

18 We use the mean of the bid and ask pńces instead of transaction prices to guard against
a potential bias . For example, duńng a period of substantial and positive order imbalance,
there may be a greater chance that the last transaction would be executed at the ask pńce . If
so, the return would be overstated and the estimated correlation between the return and the
order imbalance biased upwards . Likewise, if the order imbalance were negative, the return
would be understated, again leading to an upward bias in the estimated correlation . In fact, this
potential bias is not substantial. In an earlier version of this chapter, we employed an alternative
estimate of the fifteen-minute return, namely the ratio of the value of the constructed index at
the end of the interval to the value at the end of the previous interval This alternative utilizes
transaction pńces and does not require that a stock trade in two successive fifteen-minute
peńods. Although not reported here, the empirical results using this alternative measure are
similar.

19 Οπ the basis of Fisher's z-test and twenty-five observations, any correlation greater than
0.49 is significant at the one percent level .
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Figure 12.3. Plot offifteen-minute returns on SEEP stocks versus the order imbalance in Sf~P
stocks in the same fifteen minutes for October 19, 1987 . The fifteen-minute returns are derwed
from stocks that traded in the fifteen-minute interval and traded in the prior fifteen-minute
interval. The fifteen-minute return itself is the ratio of the total value of these stocks in the
interoal to the total value in the ~»zor fifteen-minute interval, reexpressed as a percentage . The
price of each stock is taken as the mean of the bid and the ask price at the time of the last
transaction in each interval. The first return is for the interval 9 :45-10:00. The net Sf~P
buy imbalance is the dollar value of the trades at the ask less the dollar value of the trades at
the bid in the fifteen-minute interval. The correlation between the fifteen-minute returns and
the order imbalance is 0.81 .

12.3.3 Cross-Sectional Results

The aggregate time series analysis indicates a strong relation between order
imbalances and stock returns . This finding, however, provides no guarantee
that there will be any relation between the realized returns of individual
securities and some measure of their order imbalances in any cross-section .
In the extreme, if all trading is due to index-related strategies and these
strategies buy or sell all stocks in the index in market proportions, all stocks
will be subject to the same buying or selling pressure . As a result, there will
be no differential effects in a cross-section .

Let us for a moment continue to assume that all trading is due to index-
related strategies, but let us assume that these strategies buy or sell subsets
of the stocks in the index and not necessarily in market proportions . Even
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Figure 12.4. Plot offifteen-minute returns on Sf~P stocks versus the order imbalance in the
same fifteen minutes for October 20, 1987 . The fifteen-minute returns are derived from stocks
that traded in the fifteen-minute interval and traded in the prior fifteen-minute interval . The
fifteen-minute return itself is the ratio of the total value of these stocks in the interval to the total
value in the priorfifteen-minute interval reexpressed as a percentage . The pace of each stock is
taken as the mean of the bid and the ask price at the time of the last transaction in each interval .
The first return is for the interval 9 :45-10:00. The net Sf~P buy imbalance is the dollar value
of the trades at the ask less the dollar value of the trades at the bid in the fifteen-minute interval .
The correlation between the fifteen-minute returns and the order imbalance is 0 .86.

in this case, it is theoretically possible that there will be no cross-sectional
relations if, for instance, all stocks are perfect substitutes at all times .

As a result, finding no relation between realized returns and order im-
balances in a cross-section of securities does not preclude a time series re-
lation. Finding a relation in a cross-section indicates that, in addition to
any aggregate relation over time, the relative amount of order imbalance is
related to individual returns .

With this preamble, let us turn to the cross-sectional analysis . To begin,
the trading hours of October 19 and October 20 are divided into half-hour
intervals. The sample for a given half hour includes all securities that traded
in the fifteen minutes prior to the beginning of the interval and in the
fifteen minutes prior to the end of the interval . For each security, the order
imbalance includes all trades following the last trade in the prior fifteen
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Figure 12.5. Plot ~f fifteen-minute returns on non-S£~P stocks versus the order imbalance
in the same fifteen minutes for October 19, 1987 . The fifteen-minute returns are derived from
stocks that traded in the fifteen-minute interval and traded in the prior fifteen-minute interval.
The fifteen-minute return itself is the ratio of the total value of these stocks in the interval to
the total value in the prior fifteen-minute interval, reexpressed as a percentage . The price of
each stock is taken as the mean of the bid and the ask pace at the time ~f the last transaction
in each interval. The first return is for the interval 9 :45-10:00. The net non-Sf~P buy
imbalance is the dollar value of the trades at the ask less the dollar value of the trades at the bid
in the fifteen-minute interval. The correlation between the fifteen-minute returns and the order
imbalance is 0.81 .

minutes through and including the last trade in the half-hour interval . The
return for each security is measured over the same interval as the trading
imbalance using the mean of the bid and ask prices . To control for size,
the order imbalance for each security is deflated by its market value as of
October 16 to yield a normalized order imbalance .

The estimated rank order correlation coefficients for the S&P stock
are uniformly positive for the half-hour intervals on Monday and Tuesday
(Table 12.2) . They range from 0 .11 to 0 .51 and are statistically significant
at the five percent level . The smallest estimate of 0 .11 is for the 2 :00 to 2 :30
interval on Monday afternoon, during part of which the SIAC system was
inoperable. All other estimates are above 0 .20. The rank order correlation
coefficients for the non-S&P stocks are similar to those for the S&P stocks .
They range from 0.23 to 0 .54, with the exception of the 2 :00 to 2 :30 interval

on Monday. This analysis provides support for the hypothesis that there is
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Table 12.2. Cross-sectional rank correlations of individual security returns and normalized
order imbalance by half hour intervals . For a given half hour, a security is included if it trades
in the fifteen minutes prior to the beginning of the interval and in the last fifteen minutes
of the interval. The return is calculated using the mean ~f the bid and ask prices after the
last transaction prior to the interval and the mean of the bid and ask prices at the end of the
interval. Thus, there is a significant relation to order imbalances for Sf~P stocks, but not
to order imbalances as measured here for non-Sf~P stock. Adding the Monday return to the
Sf~'P regression leads to a reduction in the z-statistic on scaled order imbalances to -0.92 .
As reported in footnote 23, the Monday returns enter significantly for both groups of stocks .
This behavior of the regression statistics is consistent with the hypothesis that the scaled order
imbalance measures selling pressure for individual securities with substantial measurement
error and that the Monday return measures selling pressure with less error .

Interval

S&P 500 Stocks

	

Non-S&P Stocks

Rank

	

No. of

	

Rank

	

No. of
Correlationa

	

Stocks

	

Correlat~ona

	

Stocks

Monday, October 19

10:00-10:30 0.31 278 0.30 427
10:30-11 :00 0 .30 364 0.32 560
11 :00-11 :30 0 .51 396 0.54 607
11 :30-12 :00 0 .51 417 0.51 565
12:00-12 :30 0.47 431 0.42 543
12:30- 1 :00 0 .31 437 0.45 546

1 :00- 1 :30 0 .33 435 0.42 470
1 :30- 2:00 0 .33 436 0.44 465
2:00- 2:30 0 .11 431 0.00 515
2:30- 3:00 0 .36 436 0.44 551
3:00- 3 :30 0 .22 433 0.40 563
3:30- 4:00

	

0.27

	

415

	

0.23

	

681
Average

	

0.34

	

0.37

Tuesday, October 20

10:00-10 :30 0 .51 323 0.51 462
10:30-11:00 0.52 400 0.44 575
11:00-11 :30 0 .30 406 0.43 577
11:30-12:00 0.12 365 0 .16 583
12:00-12:30 0.32 343 0 .35 574
12:30- 1 :00 0 .47 341 0 .47 571
1:00- 1 :30 0 .35 361 0 .39 550
1:30- 2 :00 0.40 381 0 .46 461
2:00- 2 :30 0.47 398 0 .37 446
2:30- 3 :00 0.43 402 0 .50 495
3:00- 3 :30 0.43 405 0.40 516
3:30- 4 :00

	

0.31

	

428

	

0.34

	

604
Average

	

0.39

	

0.40

aThe asymptotic standard error of the rank correlation estimates is 1/,/ηο. of stocks under the null
hypothesis of zero correlation .
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Figure 12.6. Plot offifteen-minute returns on non-SEEP stocks versus the order imbalance
in the same fifteen minutes for October 20, 1987. The fifteen-minute returns are derzved from
stocks that traded in the fifteen-minute interval and traded in the~ri~r fifteen-minute interval.
The fifteen-minute return itself is the ratio of the total value of these stocks in the interval to
the total value in the prior fifteen-minute interval reex~ressed as a percentage . The price of
each stock is taken as the mean of the bid and the ask price at the time of the last transaction
in each interval. The first return is for the interval 9:45-10:00. The net non-SEEP buy
imbalance is the dollar value of the trades at the ask less the dollar value of the trades at the bid
in the fifteen-minute interval. The correlation between the fifteen-minute returns and the order
imbalance is 0.72.

a positive cross-sectional relation between the return and normalized order
imbalance .

12.3.4 Return Reversals

The significant relation between order imbalances and realized returns
leads to the conjecture that some of the price movement for a given stock
during the periods of high order imbalance is temporary in nature. We
might expect that, if negative order imbalances are associated with greater
negative stock returns, the price will rebound once the imbalance is elimi-
nated. If on Monday afternoon those securities exhibiting the greatest losses
were subject to the greatest order imbalances, these securities should have

\~ .
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the greatest rebounds on Tuesday if the imbalance is no longer there . This
cross-sectional conjecture is the subject of this section .

The last hour of trading on October 19 and the first hour of trading on
October 20 are considered in the analysis . For a stock to be included in the
analysis, it had to trade on Monday between 2 :45 and 3 :00 and between 3 :45
and the close of the market and had to open on Tuesday prior to 10 :30 . 20

The Monday return is calculated using the mean of the bid and ask prices
for the last quote prior to 3 :00 and the mean of the bid and ask prices for
the closing quote . The Tuesday return is calculated using the mean of the
bid and ask prices for Monday's closing quote and the mean of the bid and
ask prices for the opening quote Tuesday. 2 ~

There are 795 stocks with both Monday and Tuesday returns as well as
beta coefficients that will be used below. The cross-sectional regression of
Tuest, the Tuesday return for stock i, on the Mont , the Monday return, and

fi t , a dummy variable with the value of one for a stock in the S&P 500 and
zero otherwise, is

Tuest = -3.33 + 3.91 ~ t -

	

0.54 Mont,

	

R2 = 0.26,
(-9.20)

	

(8.49)

	

(-7.93)

where the numbers in parentheses are the associated heteroscedasticity-
consistent z-statistics. 22 The positive estimated coefficient for the dummy
variable reflects the previously observed greater aggregate drop and subse-
quent recovery in S&P stocks . The significantly negative coefficient on the
Monday return is consistent with the conjecture of a reversal effect . 23

Another explanation of this reversal pertains to a beta effect . 24 If those
stocks that fell the most on Monday had the greatest betas, these same stocks
might exhibit the greatest returns on Tuesday, regardless of the level of order
imbalances. Further, it is always possible that the reversal might be just a
size effect. The following regression allows for the effects of these other two
variables :

Tuen = -13.50 + 0.76 ~ ; - 0.54 Mono + 1.90 ln(M;) -

	

1 .02 ß~,

	

R2 = 0.34,
(-8.87)

	

(1 .43)

	

(-7.62)

	

(8.03)

	

(-1 .93)

2oThe selection of these particular intervals is based on an examination of the indexes in
Figure 12 .1 . Other time peńods considered lead to similar results .

2 ~The following analysis was repeated using transaction prices . The results did not change
materially.

22 The usual t-values are, respectively, -8 .84, 8 .22, and -12 .30.
2sWe also regressed the Tuesdaγ returns on the Monday returns separately for the 366 S&P

stocks and for the 429 non-S&P stocks . The slope coefficient for the S&P regression is -0 .68
with a z-statistic of -6.19 , and the slope coefficient for the non-S&P regression is -0 .42 with a
z-statistic of -4 .73 . The respective R 2 's are 0.19 and 0 .13 .

24 Kleidon (1992 ) provides an analysis of this explanation .
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where Mi is the market value of stock i as of the close on October 16 and
ß~ is a beta coefficient estimated from the fifty-two weekly returns ending in
September 1987 as described in footnote 12 . 25 The estimated coefficient
on Monday's return is virtually unchanged . The estimated coefficient on
the dummy variable is no longer significant at the five percent level . Thus,
in explaining the return during the first hour of trading on Tuesday, the
distinction between S&P and non-S&P stocks becomes less important once
one holds constant a stock's market value and beta in addition to its return
during the last hour on Monday.

These results are consistent with a price press~~re hypothesis and lead
to the conclusion that some of the largest declines for individual stocks on
Monday afternoon were temporary in nature and can partially be attributed
to the inability of the market structure to handle the large amount of selling
volume .

12.4 Conclusion

The primary purpose of this chapter was to examine order imbalances and
the returns of NYSE stocks on October 19 and 20, 1987 . The evidence shows
that there are substantial differences in the returns realized by stocks that
are included in the S&P Composite Index and those that are not . In the
aggregate, the losses on S&P stocks on October 19 are much greater than
the losses on non-S&P stocks . Importantly, by mid morning of October 20,
the S&P stocks had recovered nearly to the level of the non-S&P stocks . Not
surprisingly, the volume of trading in S&P stocks with size held constant
exceeds the volume of trading in non-S&P stocks .

In the aggregate, there is a significant relation between the realized
returns on S&P stocks in each fifteen-minute interval and a concurrent
measure of buying and selling imbalance. Non-S&P stocks display a similar

25Α more direct test of the price pressure hypothesis suggested b~ the referee is to regress
Tuesday returns on some scaled measure of order imbalance for the last hour ~n Monday
rather than on the return for this hour. To accommodate differences between S&P and non-
S&P stocks, we report the regression separately for these two groups . The regression for the
S&P stocks is

Tues ; _ -21.48 -

	

014 Ordlmb ; +

	

3.39 1η(Μ,) -

	

0.99 β~,

	

= 0.25 .

(-7.80)

	

(-2.52)

	

(10.43)

	

(-0.97)

The regression for non-S&P stocks is

lue ~ _ -5.35 -

	

0.002 Ordlmb ; + 0 .77 ln(M,) -

	

0.33 ß~,

	

R2 = 0.02 .
(-2 .89)

	

(-1 .09)

	

(2 .74)

	

(-0.59)

Ordlmb; is the appropriately scaled order imbalance, and the numbers in parentheses are
z-statistics.
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but weaker relation . Quite apart from this aggregate relation, the study finds
a relation within half-hour intervals between the returns and the relative
buying and selling imbalances of individual stocks . Finally, those stocks
with the greatest losses in the afternoon of October 19 tended to realize the
greatest gains in the morning of October 20 .

These results are consistent with, but do not prove, the hypothesis that
S&P stocks fell more than warranted on October 19 because the market
was unable to absorb the extreme selling pressure on those stocks . 26 If this
hypothesis is correct, a portion of the losses on S&P stocks on October 19
is related to the magnitude of the trading volume and not real economic
factors. A question of obvious policy relevance that this chapter has not ad-
dressed is whether buying and selling imbalances induced by index-related
strategies have a differential relation to price movements from order imbal-
ances induced by other strategies .

2sß alternative hypothesis consistent with the data is that S&P stocks adjust more rapidly to
new information than non-S&P stocks, and, between the close on October 19 and the opening
on October 20, there was a release of some favorable information . Under this hpothesis, the
losses on nonS&P stocks on October 19 were not as great as they should have been .
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Appendix A12

THIS APPENDIX DESCRIBES the procedures used in this chapter to construct
both the levels and returns of various indexes . The evidence indicates that
after the first hour and a half of trading on either October 19 or 20, 1987,
the biases from stale prices are minimal . To conserve space, we present
detailed statistics only for the S&P index for October 19 . The full analysis

is available from the authors .

A12.1 Index Levels

To estimate index levels, 27 we consider four alternative approaches . The
first utilizes prices only of stocks that have traded in the past fifteen min-
utes. Every fifteen minutes, we estimate the return on the index as follows .
To take a specific case, say 10 :00 on October 19, we identify all stocks that
have traded in the past fifteen minutes, ensuring that no price is more than
fifteen minutes old. Using the closest transaction price in the past fifteen
minutes to 10:00, we calculate the market value of these stocks and also
the value of these same stocks using the closing prices on October 16 . The

ratio of the 10:00 market value to the closing market value on October 16
gives an estimate of one plus the return on the index from Friday close
to 10:00 .

Applying this return to the actual closing value of the index on Octo-
ber 16 of 282 .70 provides an estimate of the index at 10 :00. Alternatively,
since the level of the index is arbitrary, one could set the index to one at the
close of October 16 and interpret this ratio as an index itself.

The second approach is identical to the first in that it is based only upon
stocks that have traded in the previous fifteen minutes . The difference is

27 The reader is referred to Harris (1989a) for another approach to mitigate biases associated
with stale prices .
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that, instead of the transaction price, this index utilizes the mean of the bid
and ask prices at the time of the transaction .

The third approach utilizes only stocks that have traded in the next
fifteen minutes and for these stocks using the nearest price in the next
fifteen minutes to calculate the market value . The set of stocks using the
past fifteen minutes will usually differ somewhat from the set of stocks using
the next fifteen minutes .

One criticism of this approach is that, in the falling market of Octo-
ber 19, there may be some stocks that did not trade in either the past fifteen
minutes or the next fifteen minutes because there was no one willing to buy .
The argument goes that the returns on these stocks if they could have been
observed would be less than the returns on those that traded . Excluding
these stocks would then cause the index as calculated here to overstate the
true index .

One way to assess this potential bias is to estimate a fourth index using
the first available next trade price, whenever it occurs. This index corre-
sponds to a strategy of placing market orders for each of the stocks in the
index. In some cases, this price would be the opening price of the following
day. However, ~f the next trade price is too far distant, the market could
have fallen and recovered, so that the next trade price might even overstate
the true unopened price at the time .

For October 19, the four indexes for the S&P stocks are very similar
except for the first hour and a half of trading (Figure A12 .1) . This similarity
stems from the fact that the bulk of the S&P stocks had opened and then
continued to trade. By 11 :00 on October 19, stocks representing 87 .1 per-
cent of the market value of the 462 NYSE stocks in the S&P Composite had
opened and had traded in the prior fifteen minutes (Table A12 .1) . There
was a tendency for the larger stocks to open later than the smaller stocks
(Table A12.2) . Thereafter, a substantial number of stocks traded in every
fifteen-minute interval .

The differences in the indexes in the first hour and a half of trading are
partly related to the delays in opening and to the rapid drop in the market .
If the prices of stocks that haυe not opened move in alignment with the
stocks that have opened, the true level of the market would be expected to
fall within the index values calculated with the last fifteen-minute price and
the next fifteen-minute price .

I~ in the falling market of October 19, the true losses on stocks that
had not opened exceeded the losses on stocks that had opened, the true
market index might even be less than the index calculated with the next
fifteen-minute price. This argument may have some merit. For any specific
fifteen-minute interval from 9:45 to 11 :00, there is a strong negative relation
between the returns realized from Friday close and the time of opening
(Table A12.1) .
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Figure A12 .1 . Comparison of various constructed indexes measuring the Sf~P Composite

Index with the published Sf~P Index on October 19, 1987 . There are four types of constructed

indexes, and they are calculated every fifteen minutes . The four constructed indexes differ in the

estimate of the market value at each fifteen-minute interval . The first index (used in the body

of the chapter) is based on all Sf~P stocks that traded in the previous or past fifteen minutes
and utilizes the last transaction price in the interval to estimate the total market value of these

stocks. The ratio ~f this market value to the market value of these same stocks as of the close

~n Friday, October 16, 1987, provides the index value that is plotted . The second index is
the same as the first except that the estimate of the market values of the stocks at the end of the
fifteen-minute interval utilizes as the pace of each stock the mean of the last bid and ask price

in the minute of the last transaction. The third is based upon SEEP stocks that trade in the next
fifteen-minute interval and estimates the market value by the earliest transaction price in the

interval. The fourth is based upon Sf~P stocks that trade in any future interval on October I9
and estimates the market value by the earliest transaction price . The published index is the

actual index rescaled to have a value of 1 .0 as of the close on October 16. The indexes using

future prices are only calculated through 3 :45.

The behavior of these four indexes for S&P stocks for October 20 is
similar to that of October 19 in that the four indexes approximate each other
quite closely after the first hour and a half of trading . The major difference
is that the market initially rose on October 20, and there is some evidence
that the returns on stocks that opened later in the morning exceeded the
returns of those that had already opened .
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TableA12.1 . Realized returns from Friday close cross-classified by opening time and trading
interval for Sf~P stocks during the first hour and a half ~f trading on October l9, 1987.

Trading
Interval

Opening Time
Variable

	

Overall
9 :30-9:45 9 :45-10:00 10:00-10 :15 10 :15-10 :30 10:30-10 :45 10 :45-11 :00

9:30- 9 :45 Retur~a

	

-4.0

	

-4.0
Number b

	

201

	

201
% of Value`

	

29.7

	

29.7

9 :45-10 :00 Return

	

-5.8

	

-6.2

	

-6.0
Number

	

198

	

130

	

328
% of Value

	

29.5

	

28.3

	

57.8

10 :00-10 :15 Returπ

	

-7.4

	

-7.6

	

-8.7

	

-7.6
Numbee

	

197

	

129

	

36

	

362
% of Value

	

29.4

	

28.2

	

4.8

	

62.5

10 :15-10 :30 Return

	

-8.6

	

-9.0

	

-10.1

	

-13.0

	

-9.1
Number

	

194

	

128

	

35

	

19

	

376
% of Value

	

29.3

	

28.2

	

4.8

	

3.8

	

66.1

10 :30-10 :45 Return

	

-8.7

	

-9.0

	

-10.4

	

-11.6

	

-11.1

	

-9.4
Number

	

192

	

128

	

35

	

18

	

19

	

392
% of Value

	

29.4

	

28.1

	

4.8

	

3.7

	

12.4

	

78.4

10 :45-11 :00 Returπ

	

-9.2

	

-9.5

	

-11 .0

	

-12.3

	

-9.9

	

-12.3

	

-10.0
Number

	

194

	

128

	

34

	

18

	

18

	

19

	

411
% of Value

	

29.3

	

28.1

	

4.7

	

3.7

	

12.3

	

9.0

	

87.1

a Raúo of total market value of stocks using last prices in trading interval to total market value of same stocks
using Friday closing paces, expressed as a percentage . The overall return is calculated in a similar fashion
and is not a simple average of the returns in the cells .

b Number of stocks that opened at the designated úme and traded in the tradiπg interval .

`Ratio of total market value of stocks in cell to the total market value of all 462 stocks; both market values
are based upon Friday closing prices .

Similarly, the four indexes for non-S&P stocks track each other closely
after the first hour and a half of trading, but not quite as closely as the S&P
indexes. Likewise, there is evidence that, in the falling market of October 19,
the later opening non-S&P stocks experienced greater losses than those that
opened earlier, and the reverse in the rising market of October 20 .

In view of these results, the analyses of levels of the market will be based
upon the indexes using only stocks that have traded in the past fifteen
minutes. Further, since the S&P Composite Index utilizes transaction prices,
we shall conform to the same convention . Utilizing the mean of the bid and
ask prices leads to virtually identical results .
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Table A12.2. Percentage of Sf~P stocks traded by firm size quartile in each fifteen-minute
interval during the opening hour of October 19, 1987 . The partitions for the quartiles are
constructed to have approximately an equal number of stocks in each quartile . The numbers
reported are the percentage of stocks that traded in the indicated interval out of the total number
of stocks in the size category .

Time Interval

	

9:30-9:45

	

9:45-10:00

	

10:00-10:15

	

10:15-10 :30

Large Quartile

	

31 .9

	

61 .2

	

65.5

	

69.8

2

	

36.5

	

67.8

	

74.8

	

81 .7

3

	

44.8

	

70.7

	

82.8

	

85.3

Small Quartile

	

60.9

	

84.3

	

90.4

	

88.7

Overall

	

43.5

	

71 .0

	

78.4

	

81 .4

A12.2 Fifteen-Minute Index Returns

The analysis of aggregate order imbalances employs returns on the indexes
over a fifteen-minute interval. One way to calculate such a return is to divide
the index level at the end of one fifteen-minute interval by the index level at
the end of the previous interval and express this ratio as a percentage return .

Another way is to use only stocks that have traded in consecutive fifteen-
minute intervals . The fifteen-minute return is then defined as the ratio of
the marketvalue of these stocks in one fifteen-minute interval divided by the
market value of these same stocks in the previous interval and reexpressed
as a percentage return .

In the first approach, the set of stocks in one fifteen-minute interval
differs slightly from the set in the previous fifteen-minute interval, and this
difference mad introduce some noise into the return series . However, in
comparison to the first approach, estimates based upon this second method
employ a lesser number of securities which may introduce some noise . As a
result, neither method clearly dominates the other . 28

28Another method to construct the levels of the index is to link the fifteen-minute returns
derived from stocks that trade in consecutive intervals . This alternative is dominated by that
given in the text of the Appendix. Relating market values at any point in time to the market
values as of the close on Friday, October 16, assures that an error introduced into the index at
one point in time would not propagate itself into future values of the index . Linking fifteen-
minute returns would propagate such errors . Moreover, the method in the text utilizes as many
stocks as available .
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Since there is a theoretical possibility that the use of transaction prices
might induce a positive correlation between the measure of order imbal-
ance described in the body of the chapter and the estimated fifteen-minute
returns, the results reported in the text will use the mean of the bid and
the ask prices to measure market values . To conserve space, the princi-
pal empirical results reported in the text utilize the fifteen-minute returns
based upon stocks that trade in consecutive fifteen-minute intervals . The
results based upon other methods of estimating the fifteen-minute returns
are similar.
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likelihood function, 294-295
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market, 326

	

path dependence o~ 364-367
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distributed (IID) Gaussian, 49-51,
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NYSE (New York Stock Exchange), 373
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Capital Asset Pricing Model and,
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369-394

naive forecasts, conditional forecasts
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order imbalances
nonpeńodic cycles, 152, 156
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applications o~ 320-338
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data for, 295-307
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nontrading, 86
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market overreaction
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own-autocorrelations, negative, 121
implications for portfolio returns,
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partition of state space, 290
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model of, 34-35
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path-dependent price changes, 316
34-38
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portfolio), 254-256
91-92

	

percentage price impact, 341
nontrading probabilities, 128-129

	

portfolio, 214
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biases of tests based on, 224-228
101-104
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normal cumulative distribution function,
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null hypotheses, 47-48
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predictability of, defining, 257-258
68

	

principal-component, first (PCl),
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254-256
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statistic
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random walk hypothesis, 3-5, 47
portfolio aggregation, 225
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portfolio returns
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search for, 249
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return-generating process, 116
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return-reversal strategies, 135
price changes, 3

	

profitability o~ 185
histograms o~ 300-307

	

return reversals, Standard and Poor's
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Composite 500 Index and, 385-387
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expected. See expected returns
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portfolio . See portfolio returns
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serially independent, 124
price movements, 287
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statistic analysis for, 165-171
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securities markets, microstructure o~ 287
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selling pressure, 378
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model. See Capital Asset Pricing
Model
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short-range dependence, long-range
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signal-to-noise ratio, 260
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statistical arbitrage, 16
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autocorrelations and, 54
trade, measuring price impact per unit

	

"virtual" price change, 293
volume o~ 322-331

	

"virtual" regression model, 289
trade times, endogenous, 319

	

virtual returns, 86
transaction costs, 348

break-even, 281, 283
impact o~ 350-352

	

weekend seasonalities, 186

transaction database, ISSM, 295

	

weekly returns

transaction prices, 285-286, 287
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